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A B S T R A C T

The concentration and molecular composition of soil organic matter (SOM) are important factors in mitigation
against climate change as well as providing other ecosystem services. Our quantitative understanding of how land
use influences SOM molecular composition and associated turnover dynamics is limited, which underscores the
need for high-throughput analytical approaches and molecular marker signatures to clarify this etiology.
Combining a high-throughput untargeted mass spectrometry screening and molecular markers, we show that
forest, farmland and urban land uses result in distinct molecular signatures of SOM in the Lake Chaohu Basin.
Molecular markers indicate that forest SOM has abundant carbon contents from vegetation and condensed organic
carbon, leading to high soil organic carbon (SOC) concentration. Farmland SOM has moderate carbon contents
from vegetation, and limited content of condensed organic carbon, with SOC significantly lower than that of forest
soils. Urban SOM has high abundance of condensed organic carbon markers due to anthropogenic activities but
relatively low in markers from vegetation. Consistently, urban soils have the highest black carbon/SOC ratio
among these land uses. Overall, our results suggested that the molecular signature of SOM varies significantly
with land use in the Lake Chaohu Basin, influencing carbon dynamics. Our strategy of molecular fingerprinting
and marker discovery is expected to enlighten further research on SOM molecular signatures and cycling
dynamics.
1. Introduction

Soil organic matter (SOM) is the largest carbon pool in the terrestrial
environment, serving as an important carbon sink in the global carbon
cycle. It also functions as a sink for hydrophobic organic pollutants,
mitigating their bioavailability and environmental risks [1,2]. Land use
activities have a significant influence on the SOM pool through changing
plant diversity, soil erosion, and carbon turnover rate [3,4]. The impact
of land use on the bulk contents of soil organic carbon (SOC) has been
investigated [3,5–10]. The conversion of forest into farmland leads to
considerable loss of SOC [3,5,6]. Current reports regarding the impact of
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urbanization on the SOC pool are not always consistent. Several studies
reported higher SOC in urban soils than that in natural and agricultural
lands [7,8], while others found similar [9] or lower [10] SOC in urban
areas than non-urban areas. The molecular composition of SOM is one of
the factors controlling its turnover time and accumulation in soils, and
thus provides valuable insight into the SOC dynamics [11–13].

It is challenging to discern the influence of land use on the molecular
composition of SOM due to the enormous heterogeneity of SOM, the
analytical challenges in molecular characterization, as well as the complex
and intertwined transformation mechanisms [11,14]. Advances in mass
spectrometry provide an enormous opportunity to further our
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Fig. 1. Soil sampling sites and the corresponding soil organic carbon concen-
trations across the Lake Chaohu Basin. The grey area in the middle of the basin
was the Lake Chaohu.
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understanding of the evolution of SOM molecular composition [14].
Currently, high-resolution mass spectrometry and Fourier transform ion
cyclotron resonance mass spectrometry are frequently used to determine
the molecular composition of natural organic matter, but mostly focus on
dissolved organic matter (DOM) [15–19]. The majority of the mass spec-
trometry methods focus on DOM other than SOM since the extraction pro-
cess of SOM is often problematic due to the lower extraction efficiency and
stronger bias [13]. Pyrolysis gas chromatography mass spectrometry
(Py-GC-MS) is a fast, reproducible, and information-rich technique that can
analyze the whole soil sample with limited pretreatment [20], which is
suitable formolecular profilingof SOM. Itwaspreviouslyused to investigate
the influence of land use on the molecular characteristics of SOM [21–27].
Generally, selected sets of pyrolysates were identified by the mass spectral
libraries and grouped into classes (protein, lipids, phenolics, aromatics,
lignin derivatives, etc.) to examine the origin and the evolution of SOM [20,
24,28–30]. Another approach is to identify molecular markers in SOM
which are the pyrolysates unique or prominent in a group of organicmatter
with known origin. It is in great need to further improve the throughput of
SOM molecular profiling using Py-GC-MS and spectrum processing algo-
rithm as well as discover molecular markers, with the aim of advancing
quantitative understanding of SOMmolecular signature (i.e., a small group
of molecular markers strongly discriminating between SOM types) under
the influence of land uses.

The Lake Chaohu Basin is located in the central part of Anhui Prov-
ince, China, belonging to the drainage system of the Yangtze River. The
lake itself is the fifth largest freshwater lake in China, with a surface area
of 760 km2 and a catchment area of 12,938 km2 [31]. The Lake Chaohu
Basin is a representative densely populated region in China, which pro-
cesses a variety of land use patterns [32]. It accommodates a population
of 9.65 million with a density more than 760 persons/km2 and accounts
for 24.65% of the gross domestic product in Anhui Province [32]. In
recent decades, the land uses in the basin changed significantly owing to
the expansion of agriculture, industry and urban areas [33]. Neverthe-
less, little is known regarding the impacts of land uses on the molecular
signature and cycling dynamics of SOM in the Lake Chaohu Basin.

The objectives of this study were to (1) develop a high-throughput
pipeline for profiling the molecular composition of SOM and molecular
marker discovery, and (2) discern the molecular signatures of SOM in the
Lake Chaohu Basin under different land uses. Seventy soil samples were
collected from forests, farmlands, and urban areas distributed across the
basin. We revealed the molecular fingerprints of SOM from different land
uses and identified important molecular markers. The results show that
land use drives changes of molecular composition of SOM, forming
distinct patterns.

2. Materials and methods

2.1. Site description and sample collection

Seventy soil samples were collected across the Lake Chaohu Basin,
including 25 forest sites, 24 farmland sites, and 21 urban sites (Fig. 1).
The farmland sites were located at small farms growing wheat, soybean,
corn, rice, and vegetables. The urban soils were collected from the resi-
dential areas and roadsides in cities and towns. Some of these sites were
covered by bushes or grass, while others by sparse weeds. The dominant
species at the forest sites were mainly pine, poplar, camphor, and China
fir. The soils in the Lake Chaohu Basin are mainly Anthrosols rich in
calcium and phosphate [34]. The majority of the tested samples were silt
loam soils (i.e., 66 samples) except for two silty clay loam soils and two
loam soils. Detailed site information and the soil texture analysis were
summarized in Tables S1 – S2 and Fig. S1. For each site, nine soil samples
(10 cm depth of the surface soil) were sampled by digging within a radius
of 20 m and mixed into a single sample. Surface litter and vegetation
were cleared prior to the sampling. The collected samples were air-dried
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and ground with mortar and pestle into a fine powder. The SOC was
measured using the hydrated heat potassium dichromate oxidation
colorimetry method [35]. Soil pH was determined in a 1:2.5 soil : water
suspension [36,37].

2.2. Py-GC-MS analysis

The Py-GC-MS based workflow for the molecular profiling and mo-
lecular marker discovery of SOM was summarized in Fig. 2. A Multi-shot
Pyrolyser EGA/PY-3030D (Frontier Lab, Japan) coupled to an ISQ single
quadrupole GC-MS system (Thermo Fisher Scientific, USA) was used for
the Py-GC-MS analysis. The GC was fitted with a DB-5MS capillary column
(0.25 mm� 30 m, 0.25 μm, J&K Scientific, USA) coupled to a quadrupole
mass spectrometer. The helium carrier gas was used at a constant flow of
1.0mL/min in the splitless mode. The GC temperature was programmed to
hold at initial 35 �C for 5 min, increased at a rate of 2.5 �C/min to 200 �C,
then increased at a rate of 5 �C/min to 270 �C and hold for another 5 min.
The Py-GC-MS interface temperature, injector temperature, transfer line
temperature, and source temperature were set at 280 �C, 250 �C, 280 �C,
and 300 �C, respectively. The scan range of mass spectrum was from m/
z 35 to 600 at 5 scans/s with an electron energy of 70 eV.

Soil samples (5.00 � 0.10 mg) were weighed using a microbalance
(XP56, Mettler Toledo, USA) and transferred into a deactivated stainless
steel eco-cup (Eco-cup SF, Frontier Lab, Japan). Poly-α-methylstyrene
(5 μL, 20 mg/L dispersed in dichloromethane, Mw 10,000, Sigma
–Aldrich, USA) was injected into the eco-cup as an internal standard. A
small amount of quartz wool was then inserted into the cup to prevent the
sample from flying out. Samples were pyrolyzed at 610 �C for 12 s before
the signal acquisition. The used eco-cups were burned using a butane
high-temperature flame to clean. All peaks acquired by the Py-GC-MS
were calibrated and normalized by the peak of Poly-α-methylstyrene.

2.3. Py-GC-MS spectrum processing algorithm

We developed a processing algorithm based on a previous study to
achieve customized high-throughput spectrum processing (Fig. S2) [38].
The algorithm contains the following steps: 1) A normalization step en-
forces the constraint of equal total intensity for all spectra; 2) A smoothing
step refers to a moving averaging procedure implemented for each spec-
trum to remove the high-frequency noise; 3) A baseline removal step is
accomplished with the subtraction of a curve formed by the moving
minima from each smoothed spectrum; 4) A peak detection step identifies
strong peaks which have a significant signal to noise ratios (> 2) and peak
slopes (> 0.01); 5) A peak alignment step adjusts the misalignment in
retention times so that the detected peaks can be cross-referenced in



Fig. 2. Py-GC-MS based workflow for the molecular profiling and molecular marker discovery of soil organic matter. The workflow contains the following steps: a)
The collected soil samples were air-dried and ground into a fine powder; b) Poly-α-methylstyrene was injected into the eco-cup as an internal standard; c) Py-GC-MS
analysis; d) An in-house program based on Matlab was used to process the raw pyrograms and automatically extract detected peaks from the pyrograms to form a peak
table; e) The peak table was analyzed by the MetaboAnalyst 4.0 and the relative abundance of molecules was compared among land uses; f) Pyrolysates were an-
notated using the NIST library, molecular markers were identified and related to potential soil organic matter origin and the relative abundance of the molecular
marker was compared among land uses.

Fig. 3. The soil organic carbon (SOC) concentrations (a) and soil pH (b) under
different land uses. The horizontal line in each box represents the median and
the values on the top denote the P value of each two groups based on the t-test.
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different samples; 6) At the end, all detected peaks from soil samples were
automatically extracted and tabulated for further analysis. The algorithm
code can be found in the Supplementary Data (SA). The compounds were
annotated using the National Institute of Standards and Technology
(NIST) mass spectral library with the best match.

2.4. Determination of soil black carbon (BC)

The BC concentrations in soil samples were determined using the
thermochemical oxidation method (CTO-375) modified from previous
studies [39,40]. Briefly, the inorganic carbonates in soils were first
removed by acidifying 50 mg soil sample using 6 M HCl for 1 h at room
temperature in a porcelain crucible with silica glaze surface (Purshee,
China). The resulting soils were dried at 60 �C and then placed in a muffle
furnace under 375 �C for 24 h with excess air. The resulting soil sample
was analyzed using a CHN elemental analyzer (HT-1300/S-180403,
Jena, Germany) at a combustion temperature of 950 �C to determine the
BC content.

2.5. Statistical analysis

The tabulated peak list generated by the Py-GC-MS spectrum pro-
cessing algorithm was analyzed by the MetaboAnalyst 4.0 (The Metab-
olomics Innovation Center, Alberta, Canada) [41]. The data were
processed using interquartile range filtering, log-transformed, and
auto-scaled. Partial least square discriminant analysis (PLS-DA) along
with its R2 and accuracy, as well as the variable importance in projection
(VIP) were then performed on the MetaboAnalyst using the processed
data. Student t-tests were used to determine if the means of data from two
paired land uses were significantly different. The spatial statistical and
geostatistical analysis was carried out using maptools [42] and gstat [43]
packages in the R environment [44], respectively.
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3. Results and discussion

3.1. SOC concentrations under different land uses

The geographical pattern of SOC across the Lake Chaohu Basin was
summarized in Fig. 1. Forest soils contain 2.82% � 1.95% SOC, which is
significantly higher than farmland soils (1.86% � 0.81%; P ¼ 0.047;
Fig. 3a). The difference between forest SOC (2.82% � 1.95%) and urban
SOC (2.00% � 1.38%) was not statistically significant (P > 0.05). Soil pH
may influence the biological activity and other processes that can affect
SOM [45]. The soil pH values of the forest, farmland, and urban areas were
7.40 � 0.84, 7.67 � 0.51, and 8.00 � 0.24, respectively (Fig. 3b). The pH
was relatively high as the parent material in the Lake Chaohu Basin con-
tains significantly amount of calcium carbonate [34], consistent with a
previous report [46]. Forest soil pH was similar to farmland soil pH despite
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their different SOC concentrations (Fig. 3a). Urban soil pHwas higher than
that of farmland and forest soils (P< 0.05), most likely due to the leachates
from calcareous materials [47]. The correlation between soil pH and SOC
was poor with R2 ¼ 0.2046 (Fig. S3). Thus, soil pH was not the major
determinant for the SOC pattern for different land uses.
3.2. Molecular fingerprints of SOM differed among land uses

The workflow for the molecular profiling and molecular marker dis-
covery of SOM is illustrated in Fig. 2. The untargeted Py-GC-MS was used
to obtain the raw pyrograms of SOM from different land uses (repre-
sentative pyrograms for different land uses listed in Fig. S4). A Py-GC-MS
spectrum processing algorithm was developed to process the raw pyro-
grams and automatically extract detected peaks from the pyrograms to
form a molecular library in a high-throughput manner (Fig. S5). After
processing all 70 SOM pyrograms, the algorithm identified 283 pyroly-
sates to form the molecular fingerprint for each SOM sample. Then, the
program automatically formed a large molecular library of the SOM
samples which contained 283 pyrolysates � 70 samples (Table S3). The
molecular fingerprints of the SOM samples can be visualized by the
heatmap as shown in Fig. S6.

Based on the molecular structure, the SOM fingerprints were
grouped into twelve classes. The relative abundances (i.e., the peak
intensity divided by the sum of all peak intensities in the pyrogram) of
these classes were summarized in Fig. 4a. The fingerprints of SOM can
provide some insights on the molecular patterns of different land uses.
Among these twelve classes, the relative abundances of five classes of
pyrolysates were statistically different in paired land use groups,
including alcohols, furans, phenols, benzenes, and ketones (Fig. 4b–f).
Furans and phenols are typical pyrolysis products from polysaccharides
and lignin, respectively [48]. Alcohols are typical pyrolysis products
from holocellulose and the decarboxylation products of polycarboxylic
acids [49,50]. Ketones are often found in the pyrogram of manure, crop
residue, and oil shale [51–53]. Benzenes are a group of common py-
rolysates widely found for SOM with different origins. Farmland SOM
has significantly lower alcohols and phenols than urban and forest SOM
(P < 0.05, Fig. 4b–d). This result suggests that farmland SOM has lower
input from holocellulose and lignin originating from wood materials
Fig. 4. Relative abundance of (a) all pyrolysate classes, (b) alcohol, (c) furans, (d) ph
The horizontal line in each box represents the median and the values on the top of the
aromatic hydrocarbons; P, phenols; O, other compounds; N, nitrogenous compoun
compounds; B, benzenes; AL, alcohol; A, aliphatic compounds.
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than urban and forest SOM. Forest SOM contains higher furans but
lower benzenes than farmland SOM (P < 0.05, Fig. 4c–e). Thus, forest
SOM is expected to contain significantly higher polysaccharides than
farmland SOM. Farmland SOM fingerprints have the highest ketones
among all land uses (P < 0.05, Fig. 4f), most likely due to the higher
input from crop residue.
3.3. Different land uses result in specific molecular signatures of SOM

The fingerprints of SOM samples were then analyzed by PLS-DA. SOM
from different land uses can be separated from each other by PLS-DA with
decent accuracy (Fig. 5). The PLS-DA accuracy of urban and forest soils is
relatively low due to the presence of three urban soil samples around the
classification boundary. The small overlap between shaded ellipses for
each paired land uses suggests that land use has a significant influence on
the molecular composition of SOM. Among the 283 pyrolysates in the SOM
molecular fingerprints, 47 pyrolysates contributed significantly to the
separation of SOM from different land uses (VIP score >1.7 for a paired
land uses, P < 0.05; a full list of these pyrolysates can be found in
Table S4). Here, the VIP scores were computed on the first PLS-DA
component because it always dominates the explanatory power in all
paired cases. Nevertheless, it is challenging to relate these pyrolysates to
the specific origins of SOM. Among them, we are able to identify five
molecular markers that can be associated with structural precursors rep-
resenting different origins according to the literature [54–58] (Table 1).
We grouped the markers to represent two origins affecting the structure of
SOM, which were vegetation production and condensed organic carbon
(e.g., black carbon, kerogen, coal, and soot). The relative abundances of
markers were compared among different land uses as shown in Fig. 6.

The vegetation production marker group includes naphthalene and
2,3-dihydrobenzofuran. High yield of naphthalene is commonly found
in the pyrolysis of lignin, indicating vegetation production [58]. Forest
SOM fingerprints had higher naphthalene than urban SOM (P ¼ 0.024,
Fig. 6a). 2,3-dihydrobenzofuran is a polysaccharide-derived pyrolysate
related to the vegetation production [59,60]. Its relative abundance
follows the order of forest SOM, farmland SOM, urban SOM (P < 0.05,
Fig. 6b). The condensed organic carbon marker group includes
1-methoxy-13-methyl-pentadecane and alkylbeneznes (i.e.,
enols, (e) benzenes, (f) ketones in soil organic matter under different land uses.
figure denote the P value of each two groups based on the t-test. PAHs, polycyclic
ds; K, ketones; F, furans; ES, esters; CAR, carboxylic compounds; C, alicyclic



Fig. 5. Partial least square discriminant analysis (PLS-DA) score plots of (a) farmland and forest soils (accuracy ¼ 0.58, R2 ¼ 0.78), (b) farmland and urban soils
(accuracy ¼ 0.72, R2 ¼ 0.83), and (c) urban and forest soils (accuracy ¼ 0.40, R2 ¼ 0.70). Shaded ellipses represent a 95% confidence interval for each type of land
use. The performance achieved with two axis was reported for each paired land use.

Table 1
Molecular markers identified for differentiating SOM molecular composition in
forest, farmland and urban soils.

Origin Retention
time (min)

Molecular markers VIP score Class

Vegetation 30.60 Naphthalene 2.1109 PAHs
25.98 2,3-

dihydrobenzofuran
1.7106 F

Condensed
organic carbon

69.75 1-methoxy-13-
methyl-pentadecane

2.4854 A

39.82 Heptylbenzene 2.2528 B
54.62 Decylbenzene 1.7130 B

VIP, variable importance in projection; PAHs, polycyclic aromatic hydrocarbons;
F, furans; A, aliphatic compounds; B, benzenes.
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heptylbenzene and decylbenzene). 1-methoxy-13-methyl-pentadecane
is related to fossil fuel combustion [54] and fire events [59]. It is
more abundant in urban SOM fingerprints than those in farmland
(P ¼ 0.0061, Fig. 6c). Alkylbeneznes are rich in the pyrograms of ker-
ogens and coals [55–57]. The relative abundance of heptylbenzene
followed the order of urban SOM, forest SOM, farmland SOM (Fig. 6d).
Forest SOM had significantly more decylbenzene than farmland SOM
(P¼ 0.0098, Fig. 6e). SOM influenced by different land uses has distinct
Fig. 6. Relative abundance of the molecular markers in soil organic matter under dif
methyl-pentadecane, (d) heptylbenzene, (e) decylbenzene, and (f) the black carbon/
uses. The horizontal line in each box represents the median, and the values on the t
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signatures. Forest SOM has high abundance of the markers for vegeta-
tion production, including naphthalene and 2,3-dihydrobenzofuran.
The contribution of plant-derived SOM was lower in farmlands and
urban areas than that in forests, consistent with a previous report [61].
Urban SOM generally have abundant markers for condensed organic
carbon, especially that from fossil fuel combustion (i.e.,
1-methoxy-13-methyl-pentadecane).

We further explored the potential accumulation mechanisms of SOM
under different land uses, which lead to their distinct molecular sig-
natures. Land use is the most important driver of changes in biodiver-
sity [62]. In the Lake Chaohu Basin, forests usually have the highest
plant diversity, resulting in abundant and diverse vegetation produc-
tion, contributing to the molecular pool of SOM [3]. The plant diversity
of these farmland and urban areas was relatively low as compared with
that of forests due to long-term monoculture and urban development
(Table S1), respectively. This is consistent with the high vegetation
production markers in forest SOM. Additionally, wildfires generate
condensed organic carbon in forests such as black carbon which is fairly
difficult to degrade [63,64]. Thus, forest also had significant amount of
markers for condensed organic carbon (i.e., heptylbenzene and decyl-
benzene). The diverse and rich carbon inputs of both fast-cycling and
decomposition-resistant carbon in forests result in the highest SOC
concentration (Fig. 3a). The functional complexity of the forest SOM
ferent land uses: (a) naphthalene, (b) 2, 3-dihydrobenzofuran, (c) 1-methoxy-13-
soil organic carbon (BC/SOC) ratios of soil organic matter under different land
op of the figure denote the P value of each two groups based on the t-test.
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may also contribute to its persistence and facilitates the accumulation
of SOC [65].

Urban SOM had abundant markers for condensed organic carbon. The
soil BC contents were determined to further examine the potential role of
condensed organic carbon in SOM under different land uses. There is a
significant correlation between BC/SOC values and the relative abun-
dance of 1-methoxy-13-methyl-pentadecane in SOM pyrograms
(P¼ 0.0001, Fig. S7), although the R2 is relatively low. This result further
supported the role of 1-methoxy-13-methyl-pentadecane as a molecular
marker for condensed organic carbon. The BC/SOC ratios in urban, for-
est, and farmland soils were 0.25 � 0.07, 0.15 � 0.10, and 0.16 � 0.09,
respectively. Urban SOM had significantly higher BC/SOC ratio than
forest and farmland SOM (P< 0.05, Fig. 6f), generally consistent with the
results of molecular markers. It agrees with previous studies reporting
that condensed organic carbon accumulates in industrial zones, resi-
dential sites, and roadsides in urban areas [8,66]. The BC/SOC ratio in
urban SOM in the Lake Chaohu Basin is close to that in urban soils in
Beijing (0.31–0.39) [67] and UK cities (0.28–0.39 for cities across the
North East of England) [68]. The major source of condensed organic
carbon in urban areas is wood and fossil fuel combustion [8]. Thus, the
signature of urban SOM is closely related to anthropogenic activities,
leading to the accumulation of decomposition-resistant carbon in urban
soils [68].

The ratio of BC/SOC was similar between farmland and forest soils
(Fig. 6f). The major source of soil BC in farmland is crop residue burning
[69], which was a previously used agricultural practice in the Lake
Chaohu Basin. The BC/SOC ratio in an agricultural region in central
France was reported to be from 0.01 to 0.32 with an average value of
0.05 [69]. The BC/SOC ratio in farmland SOM in the Lake Chaohu Basin
was higher than that in central France, most likely due to more frequent
crop residue burning. Condensed organic carbon generated during crop
residue burning is less stable than that generated during fossil fuel
combustion in urban areas. Our previous studies suggested that
condensed organic carbon generated during biomass combustion will
gradually release dissolved black carbon which was readily subject to
photodegradation and erosion [70,71]. Farmland soils were expected to
have more vegetation input than the urban soils as more than half of the
urban soil sites in this study only had sparse weeds (Table S1). Urban
soils had more abundant condensed organic carbon, leading to similar
SOC concentrations in these two land uses.

4. Conclusions

In the present study, we examined the molecular signatures of SOM
under forest, farmland, and urban land uses in the Lake Chaohu Basin.

(1) We first developed a customized spectrum processing algorithm to
process the raw pyrograms of SOM samples and extract detected peaks
from the pyrograms in a high-throughput manner. The algorithm iden-
tified 283 pyrolysates to form the molecular fingerprints for each SOM
sample and automatically formed a large molecular library (283
pyrolysates � 70 samples).

(2) SOM fingerprints from different land uses had specific patterns.
Farmland SOM fingerprints had the lowest alcohol/phenols and the
highest ketones among different land uses. Forest SOM fingerprints
contained higher furans but lower benzenes than farmland SOM. Farm-
land SOM has lower input from holocellulose and lignin originating from
wood materials but higher input from crop residue than urban and forest
SOM.

(3) SOM fingerprints from different land uses can be clearly separated
from each other by PLS-DA analysis. Five pyrolysates were identified as
molecular markers that can be used to distinguish the relative importance
of specific SOM sources. There is a significant correlation between BC/
SOC values and the relative abundance of one of the markers for
condensed organic carbon, i.e., 1-methoxy-13-methyl-pentadecane.

(4) Forest SOM had abundant markers from both vegetation and
condensed organic carbon, leading to its highest SOC content. Urban
217
SOM had high abundance of condensed organic carbon markers due to
anthropogenic activities but relatively low in markers from vegetation.
Consistently, urban soils have the highest black carbon/SOC ratio.

Our results highlight the potential impacts of land uses on the SOM
signature. Future study is needed to further explore the relationships be-
tween the discerned markers and specific carbon sources, which help un-
derstand the complex SOM responses to land uses. Overall, the molecular
fingerprinting andmarker discovery strategy presentedhere can enlighten
further research on how large-scale land use planning projects affect SOM
molecular signature and cycling dynamics, and inform the potential for
broader inclusion of land use planning in greenhouse gas policies.
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