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ABSTRACT: Wild birds are known to harbor and discharge
antibiotic-resistant bacteria (ARB) and their associated antibiotic
resistance genes (ARGs). However, assessments of their contribu-
tion to the dissemination of antibiotic resistance in the environment
are limited to culture-dependent bacterial snapshots. Here, we
present a high-throughput sequencing study that corroborates
extensive ARG exchange between wild bird feces and their habitats
and implies the need to scrutinize high-mobility birds as potential
vectors for global propagation of ARGs. We characterized the
resistome (281 ARGs) and microbiome of seven wild bird species
and their terrestrial and aquatic habitats. The resistomes of bird
feces were influenced by the microbial community structure, mobile
genetic elements (MGEs), and residual antibiotics. We designated
33 ARGs found in more than 90% of the bird fecal samples as core ARGs of wild bird feces, among which 16 ARGs were shared as
core ARGs in both wild bird feces and their habitats; these genes represent a large proportion of both the bird feces (35.0 ± 15.9%)
and the environmental resistome (29.9 ± 21.4%). One of the most detected β-lactam resistance genes (blaTEM, commonly harbored
by multidrug resistant “superbugs”) was used as molecular marker to demonstrate the high interconnectivity of ARGs between the
microbiomes of wild birds and their habitats. Overall, this work provides a comprehensive analysis of the wild bird resistome and
underscores the importance to consider genetic exchange between animals and the environment in the One Health approach.
KEYWORDS: wild birds, microbiome, resistome, antibiotic resistance genes, ARG dissemination

■ INTRODUCTION
Dissemination of antimicrobial resistance is one of the most
serious global issues threatening public health. While the
spread of antibiotic resistance genes (ARGs) within clinical
settings has been extensively considered, a growing number of
studies have quantitatively addressed how the widespread use
of antibiotics in the livestock, poultry and aquaculture
industries1,2 and the associated ARG discharges with animal
feces contribute to the development of the environmental
resistome.1,3−7 Prior studies have shown that ARG abundance
and diversity in the feces of farmed animals could be
significantly influenced by the use of antibiotics in animal
agriculture.8 Moreover, vast amounts of ingested antibiotics
(between 30% and 90%) are excreted unchanged,9 which have
been suggested to exert selective pressure for ARG
maintenance and propagation in receiving environments.10−13

In particular, domestic animals dwelling with human beings
(e.g., pets) contribute to the pool of clinically relevant ARGs
and antibiotic-resistant bacteria.14,15 Notably, ARGs may be
transferred across human, animals, and environmental micro-

biomes, which represent interdependent ecosystems of
potential relevance to public health.16,17

Growing urbanization and increasing fragmentation of
natural habitats may fortuitously expand the role of wildlife
on ARG propagation, including invertebrates,18 avian,19 and
mammals,20,21 since animals increasingly forage on food
sources and water contaminated by residual antibiotics and
bacteria harboring ARGs.22−25 Wild birds that frequently
inhabit ARG-contaminated environments have been postulated
as sentinels, reservoirs, and potential spreaders of antibiotic
resistance.26−28 Some migratory bird species may even expand
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ARG dissemination to faraway locations, which would
accelerate the globalization of antimicrobial resistance.16

Several studies have characterized resistant bacteria isolated
from wild birds, including pigeons,29 ducks and geese,30−32

cormorants,33 gulls,34−39 passerines40 and rooks.41 Of most
concern are bacteria carrying multidrug resistance ARGs such
as New Delhi metallo-β-lactamase encoding gene NDM-13 and
colistin resistance mcr-1,42,43 which respectively confer
resistance to clinically relevant β-lactams and colistin.39,44−50

Several studies have documented that wild birds living in
environments affected by human activities generally harbor
more ARGs than those in remote areas.19,51 Moreover, bird gut
microbiota are influenced by host phylogeny, age, sex, health,
diet and other environmental factors,52 resulting in diverse and
dynamic fecal ARG profiles. Birds are exposed to microbes at
their foraging or nesting sites and dispose of fecal microbes
broadly, representing a potentially important link in ARG
exchange and dissemination. It is not yet clear, however,
whether extensive ARG exchange occurs between wild animals
and their habitats and how this exchange shapes the birds’ and
environmental resistomes, which are important knowledge
gaps to advance the One Health approach.16

Sporadic reports based on culture-dependent approaches
and ARG sequence homology suggest that mcr-1 and β-
lactamase genes carried by birds are linked to their habitat
resistome.3,43 This suggests their value as molecular markers to
assess ARG transfer between wild birds and their habitats.
However, due to limitations of culture-based approaches, such
results provide only snapshots of potential ARG exchange
between bird gut and indigenous habitat microbiomes. It is
important to assess microbiome interconnectivity between wild
birds and their habitats, based on a larger data set of DNA
sequences that includes unculturable bacteria, to inform the
significance of wild birds in facilitating global ARG
dissemination.
Episodes of natural selection for a given gene may leave

molecular “footprints” in DNA sequences or adjacent genomic
regions that could theoretically be used to assess gene transfer
between different habitats. These unique signatures are gene
polymorphisms generated from combinations of basic evolu-
tionary processes such as genetic drift and mutation.53

Previous studies of aminoglycoside 6′-N-acetyltransferase
AAC(6′)-Ib polymorphisms54 revealed that AAC(6′)-Ib
polymorphic diversity is closely associated with their specific
ecological niche. Polymorphisms of the class A β-lactamase
gene blaTEM have been implicated in the extended spectrum of
antibiotic resistance.55 A previous study found that 5411 TEM
β-lactamase protein sequences obtained from the NCBI
GenBank database exhibited variations in critical residues
that were related to their broader resistance spectra.54 The
occurrence of nearly identical ARG nucleotide sequences
(more than 99% nucleotide identity) in different bacterial
species was shown to be an indicator of recent horizontal gene
transfer (HGT).56,57 This encouraged us to consider nearly
identical nucleotide sequences of blaTEM sequences (an
ubiquitous ARG in bird feces and the environment42,58) to
assess ARG interconnectivity between wild birds and their
habitats.
In this study, we used quantitative PCR (qPCR) to

characterize the resistome of fresh feces from seven bird
species (i.e., pigeon (Columba livia), sparrow (Passer
domesticus), chough (Pyrrhocorax pyrrhocorax), swallow
(Hirundo rustica), black-headed gull (Larus ridibundus),

snowy owl (Bubo scandiacus), and common buzzard (Buteo
buteo)) to assess interspecies variability. We screened 292
genes (16S rRNA, ARGs and MGEs) to investigate the wild
bird fecal resistome and compared them to those of their
habitats (e.g., soil for terrestrial birds and water for waterfowl).
Wild bird fecal microbial community structures were analyzed
using 16S rRNA gene amplicon sequencing. High-throughput
sequencing was used to investigate ARG interconnectivity by
analyzing high-similarity DNA sequences (>99% nucleotide
identity)57 of the common β-lactam resistance gene, blaTEM, in
both bird feces and their interconnected habitats. Analysis of
antibiotic residues in bird feces were also conducted to help
interpret the data. Overall, this study provides a comprehensive
analysis of the wild bird fecal resistome and provides
supplementary evidence for extensive ARG dissemination
between wild birds and their habitats to implicate migratory
birds as potential vectors for ARG dissemination in the
environment.

■ MATERIALS AND METHODS
Sampling. A total of 35 samples of fresh bird feces were

collected within minutes to hours of deposition, including four
fecal samples from pigeon (PI1−PI4), 12 from sparrow (SP1−
SP12), two from chough (CH1−CH2), five from swallow
(SW1−SW5), 10 from black-headed gull (BH1−BH10), one
from snowy owl (SO1), and one from common buzzard
(CB1). Ten soil samples within a 1 km radius from the feces of
several terrestrial birds (pigeon, sparrow, swallow, and chough)
and eight water samples from habitats of waterfowl black-
headed gulls were also collected and analyzed to represent the
environments that were associated with the corresponding
birds. Detailed information, including sampling strategies, time,
and sites, is provided in the Supporting Information (Text S1
and Table S1 and S2). The fecal samples, soil samples, and
water samples were collected in sterile plastic tubes and
shipped to the lab on ice immediately. Subsequently, the fecal
samples and soil samples were lyophilized and homogeneously
mixed followed by storage at −20 °C for further use. Water
samples were stored at 4 °C and filtered within 48 h. Total
DNA was extracted from all the fecal/soil/water samples using
a QIAamp PowerFecal DNA Kit (Qiagen, Germany)/DNeasy
PowerSoil Pro Kit (Qiagen, Germany)/E.Z.N.A. Water DNA
kit (Omega Biotek, America) according to the manufacturer’s
instructions.
Quantification of ARGs and Bacterial Communities.

The qPCR analysis was performed to quantify the 281 ARGs,
10 MGEs (eight primer pairs for transposase genes, one primer
pair for class 1 integron-integrase gene− IntI1 class1, and one
primer pair for “clinical” class 1 integron-integrase gene−
clinical IntI159), and 16S rRNA gene (reference gene) in the
samples as previously described.60 All of the primers used in
this study are provided in Table S3. The relative ARG copy
number was calculated as the relative ARG copy number =
10(Ct(ARG)−Ct(16S)) (10/3), where Ct(ARG) and Ct(16S) refer to
the cycle thresholds for ARGs and the 16S rRNA gene in the
qPCR amplification, respectively. For Illumina sequencing, the
V3−V4 region of the bacterial 16S rRNA gene was amplified
using the universal primers 338F and 806R. Sequencing and
library construction were performed by Beijing Biomarker
Technologies Co. Ltd., and the Biomarker biocloud platform
(www.biocloud.org) was applied for the bioinformatics
analysis. Details about the amplification and sequence analysis
are provided in Text S2.
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Analysis of Residual Antibiotics. A total of 33 of the 35
bird fecal samples collected were used to determine antibiotic
residues in this study (i.e., two black-headed gull fecal samples
collected from Tianjin, China, were not tested due to
insufficient sample mass). A total of 19 antibiotic compounds
were quantified by high-performance liquid chromatography
combined with tandem mass spectrometry (HPLC-MS/MS)
as previously described,61,62 including two β-lactams (cefalexin
and ampicillin), four quinolones (enrofloxacin, lomefloxacin,
ofloxacin, and ciprofloxacin), six sulfonamides (sulfadiazine,
sulfachlorpyridazine, sulfadimethoxine, sulfamethoxazole, sul-
fadimidine, and trimethoprim), four tetracyclines (chlorte-

tracycline, doxycycline, oxytetracycline, and tetracycline), and
three macrolides (roxithromycin, tylosin, and erythromycin).
Details of antibiotic extraction procedures, limit of quantifica-
tion (LOQ), relative standard deviation (RSD), and validation
of analytical methods are further described in Text S3.
Targeted Gene Sequencing and Analysis. A partial

fragment of blaTEM (12F to 478R) was amplified using barcode
primers, and the amplicons were sequenced using the Illumina
HiSeq 2500 platform as detailed in Text S4. Sequencing and
library construction were performed by Beijing Biomarker
Technologies Co., Ltd. Raw tags were obtained by merging
paired-end reads using FLASH (v1.2.7)63 followed by filtering

Figure 1. Characteristics of antibiotic resistance genes (ARGs) in wild bird feces. (a) Heatmap shows the abundance ARGs (ARG copies/16S
rRNA copies) in each bird feces sample. (b) Principal coordinate analysis (PCoA) plots depict Bray−Curtis distances between bird feces samples.
Fecal resistome from different bird species clusters separately (analysis of similarity, ANOSIM, r = 0.357, p = 0.001). Comparisons of ARG
abundance among different bird species based on classification of (c) the antibiotics to which they conferred resistance and (d) the mechanism of
resistance. FCA: fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol, MLSB: macrolide-lincosamide-streptogramin B.
Pigeon: PI1−PI4, sparrow: SP1−SP12, chough: CH1−CH2, swallow: SW1−SW5, black-headed gull: BH1−BH10, snowy owl: SO1, and common
buzzard: CB1.
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and clustering. The merged tags were aligned with the primers,
while the FASTX-toolkit was used to discard tags with more
than six mismatches.64,65 Tags with an average quality score
<20 in a 50 bp sliding window were truncated using
Trimmomatic,66 and tags shorter than 350 bp were removed.
We identified possible chimeras by employing UCHIME.67

Finally, an average of 163,891 clean sequences were obtained
from each sample, and the average length was 426 bp. The
denoised sequences were clustered using VSEARCH, and tags
with similarity ≥99% were regarded as a blaTEM variants.
Data Analysis. The mean and standard deviation of ARGs

and MGEs were calculated using Microsoft Excel 2017. SPSS
version 22.0 was used to determine the normally distribution
of the data by the Shapiro−Wilk test. Differences of resistome
and microbiome between different bird species and between
bird and soil and water were analyzed by the analysis of
similarities (ANOSIM) test using RStudio with the vegan
package. The Pearson correlation coefficients between log-
(tetracycline concentration) and log(tetracycline ARG abun-
dance) were calculated using SPSS version 22.0. The
Spearman correlation coefficients between ARGs and MGEs
were calculated using RStudio with the Hmisc package, and the
p-value was adjusted with the fdrci package. Network analysis
based on Spearman’s correlation coefficients (r > 0.6, p < 0.05)
between bacterial genera and genes was visualized using Gephi
0.9.2. Principal coordinates analysis (PCoA), the Procrustes
test, and the Mantel test of ARGs and microbial communities
were performed using RStudio with the vegan package and
visualized using the ggplot2 package.

■ RESULTS AND DISCUSSION
Characteristics of Wild Bird Fecal Resistomes. A qPCR

analysis with 292 primer sets was performed to investigate the
abundance and diversity of ARGs and MGEs in fecal
microbiomes from seven wild bird species: pigeon, sparrow,
chough, swallow, black-headed gull, snowy owl, and common
buzzard. A total of 112 ARGs and eight MGEs (six transposase
genes, a class 1 integron-integrase gene− IntI1 class1, a
“clinical” class 1 integron-integrase gene−clinical IntI159) were
detected in bird feces. The number of detected ARGs in each
fecal sample ranged from 54 to 108 (Figure 1a). We designated
the 33 ARGs found in more than 90% of the bird fecal samples
as core ARGs; these included genes conferring resistance to
aminoglycoside (aac(6′)-Ib, aac(6′)-II, aacA/aphD, aacC4,
aadA, aadA1, aadA2, aadA5, aphA1, strB), β-lactam (blaTEM,
blaCTX‑M, blaPSE), FCA (fluoroquinolone, quinolone, florfeni-
col, chloramphenicol, amphenicol) (catB3), MLSB (Macro-
lide-Lincosamide-Streptogramin B) (lnuA, lnuB, mphA, ermB),
tetracycline (tetB, tetG, tetL, tetR, tetM), and multidrug
resistance (acrA, acrB, acrF, acrR, mdtE/yhiU, rarD, tolC,
yceE/mdtG, yceL/mdtH, yidY/mdtL).
ARG profiles varied among different bird species. A principal

coordinates analysis (PCoA) showed that parts of the bird
resistome clustered based on the host bird species (Bray−
Curtis distance, ANOSIM, r = 0.357, p = 0.001) (Figure 1b),
which agrees with previous observations that fecal ARG
profiles differ between bird species.42,68 Genes coding for
antibiotic efflux pumps predominated in feces from black-
headed gull, swallow, common buzzard, chough and sparrow,
while snowy owl fecal ARGs were dominated by those coding
for antibiotic target protection, and pigeon feces ARGs were
dominated by those coding for antibiotic inactivation (Figure
1c). The most abundant β-lactam resistance gene in wild bird

feces was blaTEM, which was 10-fold more abundant in pigeon
[(8.77 ± 5.79) × 10−2 copies/16S rRNA copy] than in all
other bird samples (averaging 8.09 × 10−3 copies/16S rRNA
copy). Sparrows excreted the highest abundance of tetL-02
(approximately 2-fold higher than that for pigeons, 37-fold
higher than for choughs, 47-fold higher than for swallows, and
over 100-fold higher than for black-headed gulls) and tet(32)
(68-fold higher than for pigeons, 67-fold higher than for
choughs, 2-fold higher than for swallows, and 327-fold higher
than for black-headed gulls).
We observed divergence of resistance profiles among

sparrow feces collected from different regions (Figure S1,
Bray−Curtis distance, ANOSIM, r = 0.738, p = 0.001).
Sparrow feces from Weinan had lower abundances of nearly all
ARG types than those from Tianjin and Shijiazhuang cities
(Figure S2). A regional difference of bird fecal resistomes was
also observed in black-headed gulls (Figure S3, Bray−Curtis
distance, ANOSIM, r = 0.992, p = 0.002). Gulls from Kunming
(BH3−BH8) excreted predominantly multidrug, aminoglyco-
side and β-lactam resistance genes, while those from Qingdao
(BH1 and BH2) excreted predominantly tetracycline resist-
ance genes. The regional differences of the fecal resistome of
black-headed gulls might be related to their different dietary
intake; i.e., gulls from Kunming mostly forage on bird feed
provided by the local government, while those from Qingdao
and Tianjin mostly pray on fish and other aquatic organisms.
Antibiotics and MGEs Contribute to a Rich and

Diverse Wild Bird Fecal Resistome. Wildlife can ingest
pollutants that exert selective pressure for the maintenance and
enrichment of ARGs (e.g., veterinary pharmaceuticals69,70 and
heavy metals71). Here, 12 of the 19 antibiotic compounds
tested were detected in bird feces. Quinolones were detected
in all bird feces samples (17.9 ± 7.2 ng/kg) (Figure 2a).
Quinolones were previously found at high levels (54.5 ± 6.6
μg/L) in other wild birds, such as in the blood of nestling
golden eagles69 and vultures.70 The prevalence of quinolones
in wild birds might be due to their common presence in soil72

and surface water.73 Tetracycline and oxytetracycline were
detected in over 80% of the samples and were more abundant
in sparrow feces with a maximum oxytetracycline concen-
tration reaching 5.5 μg/g dry feces. Notably, tetracyclines were
present at significantly higher concentrations in sparrow feces
from Tianjin (SP6-SP9) and Shijiazhuang (SP1-SP5), which
may partly explain the higher abundance of tetracycline
resistance genes in sparrow feces than in those from the
Weinan region. Furthermore, a significant positive correlation
was observed for sparrow feces between the total concentration
of tetracyclines and the abundance of total tetracycline
resistance genes (Figure 2b, Pearson correlation coefficient r
= 0.717, p = 0.009). These data corroborate that residual
antibiotics (from dietary intake or produced by bacteria and
fungi) may contribute some selective pressure for ARGs.58

Dietary intake of residual antibiotics (and possible resistant
bacteria harboring ARGs) may be more obvious for
synanthropic birds such as sparrows and swallows that have
frequent opportunities to interact with human communities.
MGEs were also analyzed to assess their potential role in

ARG dissemination through HGT. Eight MGEs including six
transposases genes (tnpA-01, tnpA-02, tnpA-03, tnpA-04, tnpA-
05, tnpA-07), IntI1 class1, and clinical IntI1, were broadly
detected in wild bird feces. The abundance of total MGEs was
(8.55 ± 9.83) × 10−2 copies/16S rRNA copy (Figure 1a), with
tnpA-05 (a marker gene of the insertion sequence IS6 group)
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as the most abundant transposase gene [(5.76 ± 6.92) × 10−2

copies/16S rRNA copy]. IntI1 class1 (which may disseminate
ARGs as mobile gene cassettes59) were detected in 97% of the
bird fecal samples, with the highest abundance reaching 0.33

copies/16S rRNA copy in the feces of migratory snowy owl.
Moreover, clinical IntI1, which is known to correlate with
anthropogenic activities,59 were found in 80% of the bird fecal
samples (except chough). Such high abundance of MGEs is
conducive to facilitating the transfer of bird fecal ARGs to the
indigenous microbial community in the receiving environ-
ments.
The abundance of total MGEs was positively correlated with

the abundance of total ARGs in wild bird feces (Spearman, r =
0.685, p < 0.0001) (Figure 3a). Specifically, tnpA-05 was
positively correlated with 24 ARG subtypes (Spearman, r > 0.6,
p < 0.05, Figure 3b). The IntI1 class1 was positively correlated
with 18 ARG subtypes. In addition, 16 ARG subtypes were
positively correlated with clinical IntI1. MGEs are known to
contribute to the worldwide spread of mcr-1 and NDM-1
across different habitats, including clinical74−76 and environ-
mental settings,77−79 farm animals,5,80,81 and wildlife.42,82

Fecal Resistome Was Influenced by the Correspond-
ing Microbiome. The bacterial community structure has
been previously proposed to determine the structure of the
resistome of another system, soil.83 Here, wild bird feces
microbial communities were generally dominated by Proteo-
bacteria, Firmicutes, Actinobacteria, and Tenericutes phyla
(Figure 4a), as documented by previous research.52 Among
these phyla, Proteobacteria and Firmicutes were the most
dominant phyla for all bird species considered in this study,
accounting for 77.9 ± 14.5% of the total bacterial community.
Tenericutes was particularly higher in swallows (25.6 ± 13.1%).
Actinobacteria was more abundant in choughs (28.6 ± 4.3%)
and pigeons (14.8 ± 7.3%). At the genus level, 522 bacteria
genera in the tested wild bird feces were classified (Figure 4b).
Dominant genera of bird fecal bacteria generally varied

among bird species. Sparrow fecal bacteria were dominated by
the genus Catellicoccus (20.4%), Pantoea (8.7%), Lactobacillus

Figure 2. Antibiotics partly contribute to the wild bird fecal resistome.
(a) Concentrations of antibiotics in the bird feces, including β-
lactams, quinolones, sulfonamides, and tetracyclines. (b) Positive
correlations between the log (tetracycline ARG abundances) and log
(tetracyclines concentration) (Pearson, r = 0.717, p = 0.009) in the
feces of sparrow.

Figure 3. A richer bird feces resistome was correlated with higher abundance of MGEs that facilitate horizontal gene transfer. (a) Positive
correlations between the total abundances of MGEs and ARGs (Spearman, r = 0.685, p < 0.0001) in the feces of wild birds. (b) Positive
correlations between certain ARG subtypes and MGE subtypes (Spearman correlation, p < 0.05, r > 0.6, circles filled with white, light pink, to dark
red represent r values ranging from 0.6 to 0.9) in wild birds.
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(8.7%), and Pseudomonas (7.7%), while swallow fecal bacteria
were dominated by Ureaplasma (25.6%), Escherichia-Shigella
(14.8%), Catellicoccus (5.0%), Pseudomonas (4.1%), and
Lactococcus (2.9%). Common buzzard and snowy owl fecal
microbiomes were similar and were both dominated by
Clostridium_sensu_stricto_1 (50.5% and 49.5%). Black-headed
gulls from different regions harbored different fecal micro-
biomes. While Escherichia-Shigella and Lactobacillus genera
were predominant in feces from black-headed gulls in Yunnan
(BH3-BH8), the Pseudomonas genus was predominant gull
feces from Qingdao (BH1 and BH2). Previous studies have
demonstrated that diet contributes to alterations in bird gut
microbiota84 and have an even greater impact on the gut
microbiome than the host’s phylogeny.85 Besides host
phylogeny and diet, other characteristics that may influence
the fecal microbiomes include bird age, sex, reproductive cycle,
and environmental factors (e.g., temperature and pollu-
tion).86−88

A principal coordinates analysis shows that parts of the bird
fecal microbiome clustered with the corresponding bird species
(Bray−Curtis distance, ANOSIM, r = 0.424, p = 0.001, Figure
5a). Procrustes analysis and Mantel tests revealed that the
bacterial community structures (at the genus level) of wild bird
feces and fecal ARGs pass a goodness-of-fit test (Figure 5b,
Protest M2 = 0.555, p < 0.001, 999 permutations; Mantel test r
= 0.530, p = 0.001, 999 permutations) based on the Bray−

Figure 4. Microbial community composition of wild bird feces at the
(a)phylum level and (b) genus level.

Figure 5. Associations between bird fecal microbiomes and resistomes. (a) Principal coordinate analysis (PCoA) plots depict Bray−Curtis
distances between bird feces samples. Microbiomes from different bird species cluster separately (analysis of similarity, ANOSIM, r = 0.424, p =
0.001). (b) Procrustes analysis depict significant correlation between ARG abundance (Bray−Curtis) and bacterial composition (Bray−Curtis) for
wild bird feces (Protest M2 = 0.555, p < 0.001, 999 permutations; Mantel test r = 0.530, p = 0.001, 999 permutations). (c) Network analysis
revealing co-occurrence patterns of ARGs and bacterial genera. Nodes are colored based on the ARG type and bacterial genera. The node size is
proportional to the node degree, and the edges present the spearman positive correlation between nodes (r > 0.6, p < 0.05).

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c01633
Environ. Sci. Technol. 2022, 56, 15084−15095

15089

https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c01633?fig=fig5&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c01633?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Curtis dissimilarity metric, which infers a modest correlation
between bird resistome profiles and their microbial community
structure and corroborates a recent report that the fecal
resistome of migratory birds is associated with their fecal
microbiome structure.42 The correlation between fecal
resistome and microbiome for black-headed gull was stronger
(Protest M2 = 0.256, p = 0.001, 999 permutations; Mantel test
r = 0.876, p = 0.001, 999 permutations, Figure S4a,b) than that
for sparrow (Protest M2 = 0.608, p = 0.016, 999 permutations;
Mantel test r = 0.528, p = 0.003, 999 permutations, Figure
S4c,d). These results indicate that the fecal resistome of black-
headed gulls could be mainly explained by the microbiome
structure. In contrast, the sparrows’ resistome was not fully
explained by their microbiome and was apparently significantly
influenced by relatively high levels of residual antibiotics (i.e., 8
to 5602 ng/g of tetracyclines in sparrow feces).
A spearman correlation-based network analysis (r > 0.6, p <

0.05) was used to investigate the co-occurrence pattern of
ARGs and bacterial genera (Figure 5c). Escherichia-Shigella
correlated with multiple ARGs, including multidrug resistance
genes acrA, acrB, acrF, tolC, yceE/mdtG, yceL/mdtH, yidY/
mdtL, mdtE/yhiU, etc. These efflux pump ARGs (such as
AcrAB-TolC and its homologues, and mdtE, mdtG, mdtH) are
commonly found in the chromosome of Gram-negative
bacteria.89 The enrichment of Escherichia-Shigella may
contribute to the high abundance of multidrug resistance
genes in the feces of black-headed gulls, common buzzards and
swallows (Figure 4b). Tet(32) was correlated with Catellicoccus
and Streptococcus, which were relatively abundant in sparrow
feces. Tetracycline resistance genes such as tetK, tetL, tetM,

tetO, tetQ, and tetT are frequently reported in Streptococcus
isolates,90 as are MLSB, β-lactam, and fluoroquinolone
resistance genes.90 Here, Streptococcus was also correlated
with mefA, tetA-02, and Pbp5. Overall, our analysis suggests
that both microbial community structure and HGT mediated
by MGEs are key contributors to the maintenance and
dissemination of the wild bird fecal resistome (Figure S5).
High Interconnectivity between the Wild Birds Fecal

Resistome and That of Their Habitat. Principal Coor-
dinates and Procrustes Analyses Infer Significant ARGs
Interconnectivity. The resistomes of soil samples from the
habitats of terrestrial birds (pigeon, sparrow, swallow, and
chough) and water samples from the habitats of waterfowl
(black-headed gull) were investigated to assess the inter-
connectivity of ARGs between wild birds and their habitats. A
PCoA analysis showed that the fecal ARG profiles were
different from those of the birds’ habitats (Bray−Curtis
distance, ANOSIM, r = 0.548, p = 0.001, Figure 6a). This is
likely due, in part, to differences in bacterial community
structure between bird feces and their habitats (Figure 6b,
Protest M2 = 0.569, p = 0.001, 999 permutations; Mantel test r
= 0.532, p = 0.001, 999 permutations). Nevertheless, 16 ARG
subtypes with presence frequency equal or higher than 90% in
both bird fecal and habitat samples were identified as coshared
core ARGs, including aac(6′)-Ib, aac(6′)-II, aacC4, aadA,
aadA1, aadA2, aphA1, strB, blaTEM, ermB, mphA, acrF, yceL/
mdtH, catB3, tetG, and tetR. These ARGs occupied a large
proportion of the total ARG abundance in both bird feces
(35.0 ± 15.9%) and environmental samples (water and soil)
(29.9 ± 21.4%) (Figure 6c), corroborating the high

Figure 6. Shared and specific core resistome between wild bird feces and habitat samples. (a) Principal coordinate analysis (PCoA) plots depict
Bray−Curtis distances. The resistome of bird feces (n = 35), soil (n = 12), and water (n = 8) cluster separately (analysis of similarity, ANOSIM, r =
0.548, p = 0.001). (b) Procrustes analysis depict significant correlation between ARG abundance (Bray−Curtis) and bacterial composition (Bray−
Curtis) for soil, water and wild bird feces samples (Protest M2 = 0.569, p = 0.001, 999 permutations; Mantel test r = 0.532, p = 0.001, 999
permutations). (c) Relative abundance of habitat-specific core ARGs, bird-specific core ARG abundances, shared core ARGs, and other ARGs in
each sample.
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interconnectivity between the fecal bird resistome and that of
their habitat.
High Interconnectivity between the Fecal Wild Bird

Resistome and Their Habitat Microbiome Is Also Inferred
by BlaTEM Polymorphism analysis. The polymorphisms of
blaTEM, which is a shared core ARG, were investigated by high-

throughput sequencing to assess ARGs interconnectivity
between bird feces and their habitats and the associated
dissemination potential. We obtained 533 blaTEM variants with
the largest sequence divergence between clusters that had as
many as 20 site mutations, and the sequence identity between
these variants varied from 93% to 100%. The phylogenetic tree

Figure 7. BlaTEM polymorphisms derived from high-through sequencing indicate resistome interconnectivity between wild birds and their habitats.
(a) Flowchart of high-similarity blaTEM variants (>99% identity) acquired through high-throughput sequencing. (b) Phylogenetic tree of blaTEM
variants (using the Maximum Likelihood method and Tamura-Nei model) and their relative abundances in bird feces, soil, and water samples
depicted by a heatmap. (c) Co-occurrence of blaTEM variants between bird feces, soil, and water environment. (d) Shared and unique blaTEM
variants and their abundances in black-headed gull feces and the surrounding water samples from Qingdao, Kunming, and Tianjin cities.
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of these variants and other class A β-lactamases are shown in
Figures 7b and S6. These results reflect the wide ecological
niches and increasing evolutionary adaptations associated with
blaTEM genes. We found that 411 blaTEM variants were shared
by birds, soil, and water environments (Figure 7c), suggesting
the common transfer of these blaTEM variants among wild birds
and their habitat microbiomes. The blaTEM sequences were
dominated by five blaTEM variants (variant-2, -5, -4, -7, and -8)
that had higher relative abundances than 1%; together, they
added up to 86.6% of the total abundance on average in the
samples. Variant-2 was the most abundant, accounting for 52 ±
31% of the total blaTEM sequences in each sample. These
sequence divergences of clusters were preserved with high-
resolution molecular signatures to assess the transferability of
those detected ARGs.
Among the birds considered, black-headed gulls have a very

large global population (9,932,500)91 and migrate over long
distances,92 potentially contributing to ARG dissemination
across international boundaries. A total of 363, 423, and 354
blaTEM variants were coshared by gull fecal and water samples
from Qingdao, Kunming, and Tianjin, accounting for more
than 96% of the blaTEM abundance in both bird feces and water
samples. This suggests extensive translocation of ARGs
between wild birds and their habitats. Some bird activities
such as nesting, digging soil, and ingestion could facilitate ARG
translocation between the bird gut microbiome and bacteria in
the birds’ habitats, and ARGs genetically linked with MGEs
may disseminate further via HGT. Overall, these findings
represent converging evidence of ARG transfer across
ecological boundaries and underscore the need to assess and
mitigate potential dissemination of high-risk ARB that can be
harbored by both humans and animals.
Environmental Implications. This study provides a

comprehensive analysis on the wild bird fecal resistome and
microbiome and infers that bacterial community structure and
MGEs play important roles in shaping these resistomes. A
considerable proportion of coshared ARGs between the birds
and their habitats suggests high interconnectivity of wild birds’
and environmental resistomes, which was corroborated by co-
occurrence of nearly identical blaTEM nucleic acid sequences
that prevailed in both bird feces and their habitats. Wild birds
could serve as mobile sources of ARGs, and long-distance
migratory species could expand local environmental ARG
transmission to a global scale. Overall, this study sheds light on
the potential role of the wild bird resistome in mediating ARG
global dissemination and highlights the need for more
attention to the propagation of ARGs across the interfaces
between wildlife, their living environments, and humans.
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