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ABSTRACT: Analysis and characterization of naturally occurring and
engineered nanomaterials in the environment are critical for understanding
their environmental behaviors and defining real exposure scenarios for
environmental risk assessment. However, this is challenging primarily due
to the low concentration, structural heterogeneity, and dynamic trans-
formation of nanomaterials in complex environmental matrices. In this
critical review, we first summarize sample pretreatment methods developed
for separation and preconcentration of nanomaterials from environmental
samples, including natural waters, wastewater, soils, sediments, and
biological media. Then, we review the state-of-the-art microscopic,
spectroscopic, mass spectrometric, electrochemical, and size-fractionation
methods for determination of mass and number abundance, as well as the
morphological, compositional, and structural properties of nanomaterials,
with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the
environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is
important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and
characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging
concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and
characterization methods for environmental samples.

KEYWORDS: Natural nanomaterials, engineered nanomaterials, environmental samples, sample pretreatment, abundance, morphology,
composition, structure

■ INTRODUCTION

Nanomaterials originated from both natural and anthropogenic
sources are ubiquitous on Earth’s surface.1 Naturally occurring
nanomaterials with various compositions, such as nanoscale
metal oxides, sulfides, and carbonaceous materials, have
abundantly existed in the atmosphere, hydrosphere, lithosphere,
and biosphere for billions of years.2,3 Furthermore, the rapid
development of nanotechnology in the past few decades has led
to the vast production of engineered nanomaterials (ENMs)
with specific functions in almost all aspects of modern life,4 and
these nanomaterials are inevitably released to different environ-
mental media during material production, utilization, and
disposal.5,6 Therefore, millions of tons of ENMs enter the
environment as a result of accidental and incidental releases.1

Owing to the large specific surface area and high surface
energy, nanomaterials may play critical roles in biogeochemical
cycling of their constitutive elements.1,7 In particular, nanoma-
terials often possess unique surface properties, and thus, the
reactivity and bioavailability of nanomaterials in environmental
processes tend to deviate from their bulk-scale counterparts.8,9

The extent to which nanomaterials may be beneficial or

detrimental to the natural environment and human health may
not be accurately predicted based on the existing knowledge of
the dissolved or bulk species with the same elemental
composition.10,11 To understand the environmental behavior,
fate, and effects of nanomaterials, it is important to obtain
information regarding their occurrence and evolving character-
istics, including mass and number abundances, as well as their
morphological, compositional, electronic, and structural proper-
ties.
To address this need, an array of microscopic, spectroscopic,

mass spectrometric, electrochemical, and light scattering-based
techniques have been made available for the analysis and
characterization of nanomaterials from relatively simple samples
(e.g., pure materials or liquid suspensions).12 However, in
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complex real-world environmental matrices, analyzing nanoma-
terials with sufficient spatial and chemical resolutions remains
rather challenging (Figure 1). This challenge is magnified by the
coexistence of various nanomaterials of diverse chemical
compositions (and different morphologies and structures) in
the environment (Figure 2). On one hand, natural nanomateri-
als (NNMs) and environmentally weathered ENMs tend to be
extremely complex in elemental composition, crystalline phases,
or functional groups.13−15 The overall properties and behaviors
of these nanomaterials may not be appropriately represented by
summation of the coexisting components. Thus, appropriate
chemical and spatial resolutions are essential for analyzing these
nanomaterials, particularly when the minor fractions may dictate
the nanoscale reactions. On the other hand, the concentrations
of ENMs in environmental samples are often low,16,17 and
hence, analyses of these nanomaterials are hindered by matrix
effects induced by high-abundance environmental substances
(e.g., soil minerals, macromolecules, living organisms, dissolved
ions, and complexes).16 In most cases, sample pretreatment
procedures, such as extraction and preconcentration, are needed
to enhance the analytical detection limits.18,19

In this critical review, we summarize the state-of-the-art
methods for analyzing and characterizing nanomaterials in
complex environmental matrices, including natural waters,
wastewater, soils/sediments, and biological samples (e.g.,
animals, plants, and microorganisms). Measurement and
characterization of airborne nanoscale particulate matter is a
research hotspot in atmospheric environmental studies and has
been comprehensively reviewed elsewhere;20,21 herein, it is only
sporadically discussed when pertinent to a technique with
versatile applications. In the following sections, we first review
recent advances in methodology for extracting and preconcen-
trating nanomaterials from environmental matrices and then

Figure 1.Challenges for the analysis and characterization of nanomaterials in various environmental matrices, such as natural waters, wastewater, soils,
and sediments, as well as biological samples. These challenges arise primarily from the matrix effects and sample heterogeneity induced by the complex
environmental components and dynamic environmental processes, which call for improved chemical sensitivity, response time, and spatial resolution
to obtain accurate information on the abundance, morphology, composition, and structure of nanomaterials in the environment.

Figure 2. Category of nanomaterials of various compositions (metal-
based, carbonaceous, composite, and other nanomaterials) in the
environment.1,5,7,16,22 These nanomaterials have different abundances
and degrees of compositional/structural complexity, which pose
different challenges for their analysis and characterization. Specific
nanomaterials with predominantly anthropogenic, predominantly
natural, or both anthropogenic and natural sources are denoted with
black, white, and gray fonts, respectively. Nanomaterials with expected
environmental release but no documented detection in the environ-
ment are denoted by asterisks. Abbreviations: CNTs, carbon
nanotubes; CQDs, carbon quantum dots; PE, polyethylene; PET,
polyethylene terephthalate; PP, polypropylene; PS, polystyrene; PVC,
polyvinyl chloride.
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discuss the applicability and limitations of current and emerging
techniques to identify, characterize, and quantify nanomaterials.
Finally, we offer perspectives on future research needs for the
development of analytical and characterization methods for
environmental nanotechnology and nanogeoscience studies.

■ SAMPLE PRETREATMENT FOR ANALYSIS AND
CHARACTERIZATION OF NANOMATERIALS IN
ENVIRONMENTAL MATRICES

Nanomaterials in environmental matrices (e.g., waters, soils/
sediments, and organisms) typically need to be separated from
the matrix prior to analysis and characterization. The
concentrations of ENMs in aquatic environments are normally
lower than the detection limits of most currently available
analytical techniques for nanomaterials. Moreover, the ions and
natural colloids abundantly present in environmental matrices
tend to interfere with the analysis of ENMs. Thus, an extraction
process is often needed to preconcentrate the nanomaterials
while removing the interfering constituents. Nanomaterials in
soils/sediments and biological samples are usually first extracted
into a liquid matrix, which can be analyzed with or without
further treatment. In this section, we summarize the applicability
and limitations of current methods for extraction and
preconcentration of nanomaterials from complex environmental
matrices to obtain samples in a form suitable for downstream
analysis and characterization (Figure 3).
Preconcentration of Nanomaterials from Aqueous

Samples. The low concentrations of ENMs in typical aquatic
environments (normally ranging from 10−2 to 10 μg/L in surface
waters and from 10 to 102 μg/L in municipal wastewater)16 are
major factors preventing their detection and characterization by
techniques commonly used for characterizing nanoparticle
(NP) suspensions at higher concentrations (>0.1 mg/L), such
as dynamic light scattering (DLS), nanoparticle tracking analysis
(NTA), and differential centrifugal sedimentation (DCS).23,24

In addition to conventional NP separation and preconcentration
methods (e.g., ultracentrifugation, ultrafiltration, and dialysis),25

extraction methods including solid-phase extraction (SPE),
liquid-phase extraction (LPE), and cloud point extraction
(CPE), have been developed to separate and preconcentrate
nanomaterials from aqueous media for subsequent analysis.18,19

A variety of solid materials and devices have been used for
extracting nanomaterials from aqueous matrices, including ion-
exchange resin, C-18-based SPE columns, membranes, and
magnetic adsorbent materials. In early studies, commercial ion-
exchange resin26 or C-18 columns27 were used as adsorbents.
Recently, capillary column-based solid-phase microextraction
(SPME) techniques, including hydrophilic polymer monolithic
capillary microextraction28−30 and in-tube SPME,31 have been
used to extract metallic (e.g., Au and Ag)28,29,31 and insoluble
metal oxide (e.g., TiO2)

30 NPs from aqueous matrices.
Membrane materials (e.g., polyvinylidene fluoride micropore
membrane) have also been tested for SPE of nanomaterials and
achieved high enrichment factors.32,33 Alternatively, magnetic
solid-phase extraction employing Fe3O4-based adsorbents34−37

has proved to be a facile method for extracting nanomaterials
from environmental waters, and the NP-loaded adsorbents can
be collected by simply applying a magnetic field.35,36 Notably,
most of these SPE methods have been used to extract
nanomaterials with relatively high chemical stability and
minimal water solubility. Whether these SPE methods work
formore labile and soluble nanomaterials, such as ZnO andCuO
NPs, remains to be validated.

Regarding LPE methods, nanomaterials in aqueous samples
are extracted into water-immiscible ionic liquids38,39 or organic
solvents (e.g., hexane and cyclohexane)40,41 after surface
modification of the nanomaterials with surfactants. Quantitative
transfer of nanomaterials from the aqueous phase into the ionic
liquids can be facilitated by the addition of cationic
surfactants,38,39 whereas that into organic solvents entails
hydrophobization of nanomaterial surface.40,41 In either case,
the surface properties of the nanomaterials, and possibly their
aggregation states, are drastically changed, which has limited the
application of LPE.
The CPEmethods usually involve using a trace level of Triton

X-114 (TX-114), a nonionic surfactant with a lower critical
solution temperature (LCST) of 23−25 °C, and salts (e.g., NaCl
andNaNO3) to promote phase separation.When the surfactant-
added sample is heated to a temperature above the LCST of TX-
114, micelles are formed, and a variety of metal-based and
carbonaceous nanomaterials can be extracted into the
surfactant-rich phase, achieving enrichment factors on the
order of 102.42,43 The TX-114-based CPE has proved to be a

Figure 3. Methods for extracting and preconcentrating nanomaterials
from complex environmental matrices to obtain liquid suspension or
solid powder samples prior to analysis and characterization. (Acronyms
for the analysis and characterization methods are given in the List of
Acronyms.)
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robust method against matrix interferences (e.g., salts, organic
matter, and inorganic colloids)44 and has been successfully used
to extract Ag,43,45 ZnO,46 CuO,47 Ag2S,

48 and ZnS48 NPs spiked
in environmental waters for subsequent inductively coupled
plasma mass spectrometry (ICP-MS) quantification, with limit
of detection (LOD) ranging from 6 to 50 ng/L. The extracted
nanomaterials in the surfactant-rich phase can also be directly
analyzed by electrothermal atomic absorption spectrometry,
which could improve the LOD by 1 order of magnitude, for
example, 0.7 ng/L for AgNPs.49 Tominimize the interference of
dissolved metal ions (e.g., Ag+, Zn2+, and Cu2+), a complexing
agent, such as thiosulfate,43 ethylenediaminetetraacetate,46−49

or thiocyanate,50 can be added to prevent the coextraction of
dissolved species. The CPE methods are also capable of
extracting nanomaterials with different surface coatings (with
the exception of bovine serum albumin)44,47 or a mixture of
different NPs (e.g., Ag, Au, and Fe3O4).

51

Extraction of Nanomaterials from Soil and Sediment
Samples. Nanomaterials in solid-containing environmental
matrices such as soils, sediments, and sludge usually need to be
extracted from the matrices prior to analysis and character-
ization, although in some cases the sample may be analyzed/
characterized in situ (e.g., with electron microscopy). The
extracts, which contain coextracted soil components, are usually
further treated to preconcentrate/fractionate nanomaterials to
minimize interferences from the abundant colloidal particles
extracted along with the target nanomaterials.52−54 Extraction
methods for nanomaterials in soils and sediments have been
intensively studied in the past few years, aiming to achieve high
and consistent recoveries while preserving the intrinsic proper-
ties of nanomaterials. Standard leaching tests have been used to
extract nanomaterials from soils and sediments.55 However,
these methods suffer from inconsistent recoveries and
interferences from chemical species other than nanomaterials,
such as dissolved ionic metals, which hamper accurate
quantification and characterization of the nanomaterials.
Modified extractionmethods have recently been developed to

improve NP recoveries and achieve speciation analysis in soils or
sediments. Notably, sodium pyrophosphate, an established
reagent for extracting organic and inorganic colloids,56,57

including NNMs,57,58 from soils and sediments, has recently
been demonstrated to be efficient for extracting various ENMs
with enhanced recoveries. A recent study evaluated the
efficiency of various extractants, including sodium pyrophos-
phate, in extracting nanoparticulate Ag from a field soil amended
with biosolids containing Ag NPs and reported that
pyrophosphate, among the tested reagents, showed the highest
recoveries of nanoparticulate Ag while inhibiting its dissolu-
tion.59 After optimization, the pyrophosphate-based method
could efficiently extract Ag NPs at low concentrations (on the
order of 0.1 μg/g soil).60 In organic-rich soils, the recovery of
nanomaterials may be improved by UV digestion, which could
effectively degrade soil organic matter and release nanomateri-
als.61 Most recently, pyrophosphate-based sequential extraction
methods have been developed to distinguish between metallic
(e.g., Au and Ag) nanoparticles and the respective metal ions in
soils and sediments.62,63

Although pyrophosphate-based reagents are by far the most
commonly used extractants for separating nanomaterials from
soils/sediments, their applications have been limited to
extracting nanomaterials with low water solubility (e.g., Au,
Ag, TiO2, and CeO2),

59−65 for which dissolution during
extraction causes only negligible artifacts. To extract moderately

soluble nanomaterials, such as CuO NPs, from soils/sediments,
a multistep method was recently developed. This approach uses
a mixture extractant that contains a dispersing agent, a metal ion
chelating agent, and an alkaline pH buffer.66 The extraction was
followed by CPE to separate CuO NPs from dissolved
copper(II) species. However, the extraction efficiency was
relatively low (i.e., 46% after three cycles) under optimized
conditions,66 and this method remains to be validated for the
extraction of nanomaterials with greater solubility.

Extraction of Nanomaterials from Biological Samples.
Different from soil and sediment samples, in which nanoma-
terials are often associated with the surface of mineral particles,
nanomaterials may be assimilated by organisms and reside
within tissues or cells in biological samples. Hence, extraction of
nanomaterials from biological matrices, such as animal and plant
tissues and microbial cells, is more challenging and requires
methods capable of effectively digesting the biological tissues
while causing minimal alteration to the properties of nanoma-
terials. However, traditional digestion methods for biological
samples (e.g., acid digestion) are not applicable for extracting
labile metal-based nanomaterials (e.g., Ag, ZnO, and CuONPs)
from biological matrices due to potential dissolution of these
nanomaterials during digestion. In contrast, digestion of
biological tissues with enzymes or organic bases has been used
to extract labile metal-based nanomaterials, as these digestion
methods cause minimal alteration to nanomaterials and yield an
extract compatible for various downstream analysis.67,68

Enzymatic and alkaline digestion are commonly used to
extract metal-based nanomaterials from animal tissues.
Enzymatic digestion using proteinase K enabled the extraction
of metallic67,68 and insoluble metal oxide (e.g., TiO2) NPs69

frommammalian tissues, but subsequent single particle ICP-MS
(spICP-MS) analysis yielded low recoveries (e.g., 68%),67

possibly because tissue residues after enzymatic digestion could
deteriorate the transport efficiency of nanomaterials in the
spICP-MS analysis.68 Efforts have been made to improve the
recovery of enzymatic digestion. For instance, the addition of
hydrogen peroxide after enzymatic digestion with proteinase K
improved the recoveries for CeO2 NPs from zebrafish tissues.70

Ultrasound-assisted enzymatic digestion using a mixture of
pancreatin and lipase recently has been developed to extract
engineered (e.g., TiO2)

71 NPs spiked in bivalve mollusks with
high recoveries and successfully used for the analysis of various
metal-containing nanomaterials in marine bivalve mollusks.72

Compared to enzymatic digestion, alkaline digestion using
tetramethylammonium hydroxide (TMAH) yielded higher
recoveries for Au and Ag NPs in mammalian tissues,73 as well
as in a variety of commonly used model organisms for
environmental studies.73−75 However, alkaline digestion with
relatively high TMAH concentrations (e.g., ≥5%, v/v) over an
extended period of time led to dissolution of Ag NPs,59,76,77 and
thus, alkaline digestion procedures should be pretested and
optimized to avoid artifacts. Meanwhile, it was recently
demonstrated that TMAH used in alkaline digestion of rainbow
trout liver tissue caused precipitation of Ag+, which could
interfere with the spICP-MS analysis, and this challenge may be
tackled by the use of CaCl2 during digestion.

78

For plant tissues, although acid digestion has been used to
extract carbon-based nanomaterials (e.g., multiwalled carbon
nanotubes)79 and insoluble metal oxide (e.g., TiO2) NPs,80

more labile metal-containing nanomaterials are commonly
extracted by enzymatic digestion, mainly with Macerozyme R-
10, a macerating enzyme from Rhizopus sp. This method has
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been used to investigate the uptake and bioaccumulation of
various nanomaterials, including metallic (e.g., Au, Ag, and
Pt),81−85 insoluble metal oxide (e.g., CeO2 and TiO2),

80,84,86

and metal sulfide (e.g., Ag2S)
87 NPs in plants. Recently, this

method was used to extract CuO NPs, a moderately soluble
metal oxide nanomaterial, from plant tissues, but the recovery
was not reported.88 Alternatively, a methanol-based protocol
was recently developed for extracting both insoluble (e.g., Au)
and moderately water-soluble (e.g., CuO and ZnO) NPs from
leaf tissues of plants prior to spICP-MS analysis, which yielded
recoveries as high as 100%, 81%−99%, and 69%−95%,
respectively, for Au, CuO, and ZnO NPs, and limited artifacts
in particle size measurement.89

Unlike animal and plant tissues, unicellular microorganism
samples require minimal sample preparation prior to analysis.
The small sizes and simple physiologies of microbial cells allow
for direct analysis of these samples using single-cell ICP-MS90,91

and optical microscopy92 for assessing cellular uptake of metal-
and carbon-based nanomaterials. While nanomaterials in
microorganisms (e.g., yeast cells) can be extracted using
enzymatic digestion,77,93 analysis of nanomaterials in unicellular
microorganisms can also be achieved more facilely after
mechanical lysis of the cells.94−96 For instance, a simple
procedure involving sonication in deionized water was used to
lyse marine microbial cells for subsequent spICP-MS analysis of
Ag NPs.94 More recently, a glass microbead-assisted sonication
method was developed for more efficient lysis of yeast95 and
bacteria96 cells for analysis of metal-based nanomaterials.

■ METHODS TO IDENTIFY, CHARACTERIZE, AND
QUANTIFY NANOMATERIALS IN
ENVIRONMENTAL SAMPLES

In this section, we discuss the capabilities and limitations of
currently available and emerging techniques for obtaining the
morphological, compositional, and structural properties of
nanomaterials in the environment, including electron micro-
scopic, spectroscopic, mass spectrometric, and electrochemical
techniques (Table 1), along with size fractionation techniques.
Many of the listed methods can be used to (semi)quantitatively
determine the abundance of nanomaterials in different environ-
mental matrices, with varying LODs, among which spICP-MS
and chronoamperometry stand out for their high sensitivity. The
morphologies (i.e., shapes and sizes) of nanomaterials can be
characterized by various microscopic and spectroscopic
techniques with different spatial resolutions. Many techniques
can also provide information on the chemical, elemental, and
even isotopic composition of nanomaterials, including the type
of functional groups and the oxidation state of elements, whereas
fewer techniques can be used to characterize the crystal structure
of nanomaterials, providing information such as crystallinity,
crystal phase, type of chemical bonding, and the presence of
defects. Light scattering-based techniques such as DLS, NTA,
and small-angle X-ray scattering (SAXS) are useful tools for
characterizing the sizes and aggregation states of nanomaterials
in aqueous suspension. However, these techniques require
relatively high particle concentrations.23,24,97 The principles and
practical considerations of the light scattering-based techniques
have been summarized in recent reviews12,24,97 and thus are not
discussed herein.
Electron Microscopy-Based Methods. Electron micros-

copy techniques, such as scanning electron microscopy (SEM),
transmission electron microscopy (TEM), and scanning TEM
(STEM), are commonly used to determine the size and

morphology of nanomaterials. However, definitive identification
of nanomaterials in environmental samples using electron
microscopy may be hampered by artifacts due to the presence
of nanoscale objects inherent in the matrix (e.g., cellular
structures in biological samples) or introduced during sample
preparation.119,120 Such artifacts can be avoided by coupling
with elemental and structural analysis, such as energy-dispersive
X-ray spectroscopy (EDS) and selected area electron diffraction
(SAED), and electron microscopy-based technologies have
been widely used for the identification and characterization of
low-concentration nanomaterials in complex matrices, including
airborne particulate matter,121 sewage sludge,122 wastewater,123

surface waters,124 and plant tissues.80 In addition to
SAED,121,122,125 information on the crystal structure of
crystalline nanomaterials can be obtained by analyzing lattice
fringes observed by high-resolution TEM.121−123 Furthermore,
the latest spherical aberration-corrected high angle annular dark
field STEM can achieve atomic-level spatial resolution (below
0.1 nm), allowing for unambiguous identification of the crystal
structure as well as the presence of crystal defects.126−129

The high vacuum condition in the electron microscope
instruments requires that the samples should be in a dehydrated
state, and artifacts due to aggregation of nanomaterials and
precipitation of salts may occur during sample preparation,
which typically involves drop deposition (and subsequent
solvent evaporation), adsorption deposition, or ultracentrifuga-
tion harvesting.25 In contrast, some electron microscopy
techniques have enabled the observation of samples in hydrated
forms. Environmental SEM (ESEM), or atmospheric SEM,
which operates under relatively low vacuum (on the order of 102

to 103 Pa), allows characterization of nanomaterials in hydrated
samples (e.g., wet soil),130,131 and the latest modifications of
ESEM, namely, “Wet-SEM” or “Wet-STEM”, allow observation
of nanomaterials in liquid suspension.132,133 Due to the low
vacuum condition entailed in this technique, the spatial
resolution of ESEM is relatively low compared to conventional
SEM and STEM. In contrast to the “open cell” approach used in
ESEM and its modifications, a “closed cell” approach has
enabled in situ TEM characterization of liquid samples. In the
liquid-cell TEM (or liquid-phase TEM) analysis, a thin layer of
the liquid sample is enclosed in a vacuum-tight sample cell with
thin windows consisting of an electron-transparent material
(most commonly silicon nitride).134 Alternatively, cryogenic
TEM (cryo-TEM) with subnanometer resolution, which was
originally developed for determining the structures of
biomolecules,135 allows in situ characterization of NP
suspension in a frozen, hydrated state.136 These sophisticated
electron microscopy techniques, which have been widely used in
materials science and life science research, may serve as powerful
tools for in situ analysis of nanomaterials in the environment.
The ESEM and cryo-TEM methods require specialized

sample preparation; even for conventional SEM and (S)TEM,
certain types of samples (e.g., NP-containing biological samples)
need multistep treatment prior to analysis.137 In addition to the
sophisticated sample preparation, a major limitation with
electron microscopic analysis of ENMs in environmental
samples is the small field of view at high magnification. Due to
their low concentrations in environmental matrices, it is rather
difficult to locate ENMs during electron microscopy analysis.

Spectroscopic Methods. A variety of spectroscopic
methods can be used to characterize the elemental compositions
and chemical structures of nanomaterials. Nevertheless, only a
few of these techniques with sufficiently high spatial resolution
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and low detection limits are suitable for analyzing low levels of
nanomaterials in complex environmental matrices. In this
section, we discuss the capabilities and limitations of commonly
used as well as emerging spectroscopic techniques for analysis
and characterization of nanomaterials in the environment,
including EDS, electron energy loss spectroscopy (EELS), and
X-ray fluorescence (XRF) spectrometry for elemental analysis as
well as infrared (IR) spectroscopy, Raman spectroscopy, and X-
ray absorption spectroscopy (XAS) for structural analysis.
Elemental analysis of NP samples following microscopic

examination calls for spatial resolution down to the nanometer
range. Therefore, regular EDS attached to SEM with spatial
resolution in the submicrometer range is unsuitable for
analyzing nanomaterials in environmental samples.100 Con-
versely, EDS coupled with STEM has spatial resolutions down
to a few nanometers and can be operated in line-scanning and
mapping modes,100,125,129 which has proven to be a useful tool
for identifying the composition of nanomaterials in complex
environmental matrices.121,124 EELS coupled with STEM is
another spectroscopic tool for determining the elemental
composition of nanomaterials in complex matrices.126,127,138

Notably, EELS has atomic-level spatial resolution,101 and EELS-
based elemental mapping (also called energy-filtered TEM) has
been used to identify the chemical composition of nanomaterials
in airborne particulate matter,121 as well as the macromolecular
corona of nanomaterials as thin as approximately 1 nm.126

Moreover, EELS can determine the oxidation state of elements
comprising the nanomaterials,127,138 and its high spatial
resolution makes EELS superior to X-ray photoelectron
spectroscopy with micrometer-level lateral resolution in
determining the oxidation state of nanomaterials in complex
environmental matrices.126,127

XRF spectrometry is a nondestructive in situ elemental
analysis technique requiring minimal sample preparation. It was
mainly applied for analysis of bulk materials or pure nanoma-
terials, due to its relatively low spatial resolution and high
detection limit. Recently, synchrotron radiation-based micro-
scopic and nanoscopic XRFs (μ-XRF and nano-XRF,
respectively) with improved spatial resolution have facilitated
NP analysis in complex environmental samples. For instance, a
spatial resolution down to 50 nm was reported for the latest
synchrotron-based nano-XRF.102 Elemental mapping by μ-XRF
has been used, alone or in combination with mass spectrometry-
based imaging techniques (to be discussed later), to characterize
the distribution of nanomaterials in plant139,140 and animal
tissues.102,141−143 Note that EDS and EELS are static techniques
generating elemental information on samples fixed on sample
holders, whereas in situ XRF analysis with high temporal
resolution can provide dynamic information on nanomaterial
properties. In fact, spatially resolved XRF microscopy with sub-
100 nm spatial resolution was recently applied to acquire quasi-
real-time elemental maps of ZnO nanorods in simulated
wastewater.144 Given further improvements in spatial reso-
lutions and detection limits, XRF can potentially be used for
characterization of nanomaterials in environment matrices.
Infrared and Raman spectroscopies can yield extensive

information on chemical structures of materials, and these
methods are particularly useful for identifying carbonaceous
nanomaterials such as carbon nanotubes (CNTs)145 and
graphene-family nanomaterials146 in environmental matrices.
However, their relatively low spatial resolutions (1−10 μm and
102 nm, respectively)147 are often insufficient for spatially
resolved analysis or characterization of nanomaterials in

environmental matrices. The coupling of IR or Raman
spectroscopy to the tip of an atomic force microscope (AFM)
or scanning tunneling microscope has enabled nanoscale
chemical analysis with sub-50 nm resolutions.147 Notably, tip-
enhanced Raman spectroscopy can achieve subnanometer
resolution and are well suited to analyze liquid samples,147,148

thus showing great potential for analyzing and characterizing
nanomaterials in environmental samples. Infrared and Raman
spectroscopy-based methods have also shown capability for
quantification of carbonaceous and metal-based nanomaterials
in the environment. For example, near-infrared fluorescence
(NIRF) spectroscopy can quantitatively determine concen-
trations of single-walled CNTs in various environmental
samples, including wastewater,103 fish tissues,149 and sedi-
ments.103,104 Furthermore, surface-enhanced Raman spectros-
copy (SERS) was recently explored for analyzing nanomaterials
(mainly NPs of noble metals, Ag and Au) in environmental
matrices, such as plant tissues106 and surface waters,105,150 after
extraction and preconcentration. Although the detection limit of
SERS for nanomaterials in aqueous matrices is on the mg/L
level, the extraction and preconcentration pretreatment enables
detection of nanomaterials on the μg/L level.105,106

Synchrotron-based XAS, including extended X-ray absorption
fine structure (EXAFS) and X-ray absorption near edge
structure (XANES) spectroscopy, provides information on the
atomic coordination environment (e.g., coordination number,
bond length) of solid materials and can yield structural
information on nanomaterials in environmental matrices, such
as biological samples139,151 and soils/sludge.152,153 One
limitation of the XAS techniques for analyzing nanomaterials
in environmental matrices is their low sensitivity. Typically, to
obtain reliable EXAFS or XANES spectra, the total content of
the target element in the sample needs to be above 1 mg/kg.153

This constraint may be overcome by couplingmicroprobe-based
XAS with other techniques capable of identifying nanomaterials
with localized high concentration. For instance, μ-EXAFS
spectroscopy was used to confirm the presence of metallic
copper NPs in the rhizosphere of wetland plants under copper
stress, and, prior to μ-EXAFS analysis, elemental mapping by μ-
XRF was used to identify the “points-of-interest” in the sample,
where particulate copper species may exist.154

Mass Spectrometric Methods. A variety of mass
spectrometric methods have demonstrated capabilities for
analyzing and characterizing nanomaterials in complex matrices
and to provide multifaceted information such as the
concentrations, sizes, and elemental compositions of nanoma-
terials, as well as their distributions within solid samples (e.g.,
biological tissue).155 In this section, we highlight recent
advances in three categories of mass spectrometric methods
for analysis and characterization of nanomaterials in the
environment, namely, spICP-MS, mass spectrometry-enabled
nanomaterial imaging, and isotopic fingerprinting.

Single Particle ICP-MS. ICP-MS operated in the time-
resolved analysis mode is a powerful technique for analyzing
trace levels (at ng/L) of metal- and metalloid-based nanoma-
terials in aqueous matrices, including natural waters, wastewater,
and NP suspensions extracted from soils/sediments or bio-
logical tissues.109,156−158 ICP-MS analysis in the single particle
mode can give information on the number concentration of the
nanomaterials and the mass of individual particles, as well as
particle size and size distribution, which can be calculated by
assuming a specific shape (e.g., sphere) and composition (e.g.,
mass fraction of the constituent metal) of the nanomateri-
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als.107,159 Recently, the spectrum of information that can be
obtained by spICP-MS was expanded to other properties of
nanomaterials, such as the presence of pores within a particle.160

The sensitivity of spICP-MS analysis is higher than that of other
nanoparticle sizing techniques, such as DLS, NTA, and DCS
with a detection limit above 0.1 mg/L,23,24,161 as well as field-
flow fractionation (FFF) coupled to ICP-MS with a detection
limit on the order from 0.1 to 1 μg/L.162−164 Moreover, it was
recently demonstrated in an interlaboratory study that sizes and
particle number concentrations of Au NPs measured by spICP-
MS were highly consistent with those measured by SEM,
whereas other sizing techniques such as DLS and NTA yielded
larger particle sizes, broader size distributions, and lower particle
number concentrations.165

A key feature of spICP-MS analysis is its ability to distinguish
between nanoparticulate and dissolved metal species based on
the particle-related peak signals versus the baseline, although the
presence of dissolved metal species has been a major barrier to
achieving high analysis sensitivity by spICP-MS.166 The smallest
size of a nanoparticle that can be detected (i.e., the size detection
limit, Dmin) by spICP-MS varies for different metal elements
constituting the nanomaterials167 and depends on the instru-
ment sensitivity for the element, density of nanoparticles, and
background noise primarily arising from dissolved spe-
cies.110,167,168

Among the commonly investigated nanomaterials, high
sensitivity may be readily achieved for Ce-, Au-, and Ag-based
NPs, while analyses of Si-, Ti-, Fe-, and Zn-based NPs are rather
challenging,110,167 mainly due to isobaric or polyatomic
interferences and the presence of high background metal
concentrations. For instance, the difficulty to analyze Si-
containing NPs arises from the high abundance of Si in natural
waters and polyatomic interference of 28Si from dinitrogen ions,
and the analytical sensitivity can be improved by using
microsecond dwell time.169 The spICP-MS analysis of Ti-
containing NPs (e.g., TiO2 NPs) in environmental waters is also
challenging in terms of analytical sensitivity,170 due to isobaric
and polyatomic interferences with 48Ti measurement on a
standard quadrupole ICP-MS with 1 atomic mass unit
resolution.171 This challenge may be solved by targeting
alternative isotopes (e.g., 47Ti and 49Ti)170,172 less prone to
isobaric/polyatomic interferences or by employing high-
resolution ICP-MS with mass resolution at or better than 0.01
atomic mass unit.173 In the analysis of Fe-containing NPs,
monitoring the most abundant Fe isotope (i.e., 56Fe) is also
prone to polyatomic interference (e.g., from 40Ar16O+,
40Ca16O+), which may be suppressed by using H2 or NH3 as
the reaction gas.174−176 The fast dissolution and relatively high
water solubility of ZnO NPs make it particularly challenging to
analyze low levels of ZnO NPs dispersed in pure water.177

Online coupling of an ion-exchange resin column prior to
spICP-MS analysis can effectively reduce dissolved zinc
concentration and improve the detectability of ZnO NPs;178

this strategy can also improve the sensitivity for the analysis of
Ag NPs, which can undergo fast dissolution under certain
conditions.179

Although most spICP-MS studies have been performed using
instruments with a quadrupole mass analyzer,158 it was recently
found that instruments with a magnetic sector field mass
analyzer can significantly improve the sensitivity in single
particle analysis.180,181 For instance, theDmin values of Ag, TiO2,
and Fe3O4 NPs as measured by the sector-field ICP-MS were as
low as 3, 12, and 19 nm, respectively.182,183 Most recently, a

sector-field ICP-MS with the latest microdroplet generation
sample introduction system achieved Dmin values below 10 nm
for a variety of metal oxide NPs, including TiO2, Al2O3, Fe3O4,
and CuO NPs.184

Single particle analysis on a quadrupole-based instrument has
largely been operated in a way that only one isotope is detected
at a time. Yet, the latest models operated at microsecond dwell
times (e.g., 20−100 μs) have enabled the analysis of dual
isotopes and have been used to analyze bimetallic Au−Ag NPs
with either homogeneous alloy or core−shell structures185−187
and to explore the possibility of differentiating between
engineered and natural nanomaterials.185 Most recently, a
state-of-the-art quadrupole-based ICP-MS instrument capable
of detecting up to 16 elements in a single run has been used for
multi-element analysis of nanomaterials in wastewater and
biosolids.188 Alternatively, ICP-MS with a time-of-flight (TOF)
mass analyzer that is capable of quasi-simultaneous multi-
element analysis on a particle-by-particle basis has been applied
for the analysis of NPs in aqueous samples.189,190 Single particle
multi-element fingerprinting analysis enabled by ICP-MS with a
TOF mass analyzer has also been used to differentiate
engineered CeO2 NPs from natural Ce-containing NPs in
colloids extracted from soils,191 as well as to detect and quantify
TiO2 NPs in surface waters with high background Ti
levels.192,193 Despite the potential of this technique for source
apportionment of nanomaterials in complex matrices, several
barriers must be overcome before it becomes a routine analytical
tool, including insufficient sensitivity for some elements (high
Dmin) and complex data analysis.194,195

Mass Spectrometry for Nanomaterial Imaging. Apart from
electron microscopy and associated spectroscopic methods
(e.g., EDS and EELS) and synchrotron-based μ-/nano-XRF,
mass spectrometric techniques can be used to visualize the
distribution of nanomaterials within solid matrices (e.g.,
biological tissue), including laser ablation ICP-MS (LA-ICP-
MS) and secondary ion mass spectrometry (SIMS).
LA-ICP-MS is a technique for in situ elemental analysis of

solid samples with micrometer-level spatial resolution (on the
order from 1 to 10 μm).100 In LA-ICP-MS analysis, a solid
material is ablated with high-power laser, and a certain volume
(typically with a lateral area from 10 to 105 μm2 and a depth from
1 to 10 μm) of the material is removed from the surface after
each laser shot to form aerosols, which are introduced to the
ICP-MS instrument for elemental analysis. LA-ICP-MS has
been used to investigate the uptakes and spatial distributions of
metallic141,142,196 and metal oxide140,196 NPs in terrestrial and
aquatic organisms. However, due to the micrometer-level spatial
resolution, elemental distribution images obtained by LA-ICP-
MS (with pixel sizes typically above 1 μm) cannot provide direct
evidence for the presence of nanomaterials within the biological
tissues. Moreover, conventional LA-ICP-MS cannot distinguish
between nanoparticulate and dissolved forms of metals, and
complementary techniques, such as XANES, were used to
analyze the speciation of metals detected in the biological
tissues.141,142 Recently, novel approaches were developed for
single particle analysis in biological matrices197−199 and soils200

by LA-ICP-MS. For instance, by optimizing the laser ablation
and spICP-MS conditions, not only the spatial distribution of Au
NPs but also the particle number concentration and size at a
particular location of a biological sample could be obtained.197

Note that sophisticated data analysis is required for transforming
the large raw data sets into spatially resolved particle size and
concentration data.198,199 Apart from metal-based nanomateri-
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als, LA-ICP-MS has also been explored for quantification,
tracking, and imaging of graphene and potentially other
carbonaceous nanomaterials in plants by using inherent residual
metals (e.g., Ni and Mn), which are widely and stably present in
graphene materials, as fingerprints.201 Given that potential
interferences from abundant backgroundmetals may be present,
the indicative metals need to be carefully selected when using
this method to analyze carbonaceous nanomaterials in more
complex matrices (e.g., soils).
SIMS is a high-sensitivity surface analysis technique capable of

determining the chemical composition of the top few atom
layers of a solid sample, enabling two-dimensional elemental
mapping as well as depth profiling and three-dimensional
imaging. During SIMS analysis, a sample placed under an
ultrahigh vacuum is bombarded with an accelerated primary ion
beam, and the secondary ions ejected from the surface of the
sample are analyzed by a mass spectrometer. SIMS with a TOF
mass analyzer (TOF-SIMS), which is the most common type of
SIMS, has been used to identify and determine the two- or three-
dimensional spatial distribution of inorganic NPs (e.g., CeO2
and TiO2)

143,202 in biological materials such as rat lung
tissues143 and algal (Chlorella vulgaris) biofilms.202 The lateral
resolution of conventional TOF-SIMS analysis is typically above
100 nm, and it was recently improved to below 50 nm.111 This
so-called nanoscale SIMS (or nanoSIMS) holds great potential
for quantitative elemental imaging of biomaterials on the
subcellular or suborganelle level.102,111,203,204 For instance,
TOF-SIMS with a lateral resolution of approximately 80 nm
was used to study the uptake and distribution of aggregated Ag
and CeO2 NPs in plant root tissues.84 It is expected that the
lateral resolution of nanoSIMS can be further improved,
enabling the detection of individually dispersed NPs. As with
conventional electron microscopy, the samples need to be
chemically or cryogenically fixed prior to SIMS analysis,102 and
thus, alteration to NP properties may occur.
Isotope-Based Techniques. Labeling nanomaterials with

radioactive and stable isotopes has enabled the detection and
quantification of these isotopically labeled nanomaterials with
high sensitivities and selectivities against interferences from
natural background;205 radiolabeling enables very low detection
limits (in the range from pg/L to ng/L), whereas stable isotope
labeling yields detection limits on the order from 1 to 10 ng/L
(or ng/kg).206,207 However, these isotopic tracer techniques
cannot be used for analyzing nanomaterials without such
deliberate labels, which is the case for the majority of natural and
engineered nanomaterials already present in or being released
into the environment, except for nanomaterials with known
inherent isotope ratios (e.g., CNTs).208

In contrast, the recently developed isotopic fingerprinting
technique based on multicollector ICP-MS (MC-ICP-MS)
analysis of stable isotope ratios shows great promise for
identification, quantification, and source tracing of nanomateri-
als. For instance, isotope fractionation occurs during the
dissolution and formation of Ag NPs in the aquatic environ-
ments, and the variation in the 109Ag/107Ag ratio can be
potentially used to distinguish between engineered and naturally
formed Ag NPs.209 Si and O dual isotopic fingerprinting assisted
by machine learning has enabled differentiation of natural SiO2
NPs (e.g., quartz and diatomite) from engineered SiO2 NPs
synthesized with different methods.210 Furthermore, Si isotopic
fingerprinting methods were recently successfully applied in
source apportionment of fine particulate matter, a large fraction
of which falls in the nanoscale size range, in polluted urban air. Si

isotopic composition analysis enabled the direct tracing of
primary sources of fine particulate matter,211 whereas a
combination of Si abundance and isotopic composition analysis
(i.e., two-dimensional Si fingerprints) was recently shown to be a
viable tool for estimating contributions from both primary and
secondary sources.212 Most recently, a chemical multifinger-
printing approach integrating elemental fingerprints, high-
resolution structural fingerprints, and/or stable isotopic finger-
prints demonstrated its capability to identify the sources of
ultrafine particles (with sizes <100 nm) in human serum and
pleural effusion,213 as well as airborne magnetite NPs in the
urban atmosphere.214

Electrochemical Methods. Electrochemical techniques,
such as voltammetry and particle−electrode collision-based
chronoamperometry, have shown great potential for in situ
detection and characterization of nanomaterials in aqueous
environments.215 The electrochemical measurement can be
performed on portable instruments, making them particularly
suitable for on-site environmental analysis.
In voltammetry measurements, metal-based nanoparticles

produce electrochemical signals at different electrode potentials
than corresponding dissolved metal species, which can be
translated to the presence and concentration of nanomaterials.
Voltammetric techniques, such as anodic stripping voltammetry
and adsorptive cathodic stripping voltammetry, have been
explored to detect a variety of nanomaterials, including metal
chalcogenides (e.g., CuxS,

216 FeS,217,218 and HgSe)116 and
metallic (e.g., Au117 and Ag)219,220 NPs, in artificial and natural
aqueous matrices. However, the voltammetric signal is highly
dependent on the composition of the aqueous matrix, including
the type and composition of the electrolyte as well as the
presence of electroactive dissolved metals, inorganic ligands
(e.g., sulfide ions), and natural organic matter (NOM).217,218

Moreover, the analyte selectivity of voltammetric measurement
is relatively low. For instance, nanoparticles of different metal
sulfides can produce an electrochemical signal at similar redox
potentials, which prevents their unambiguous identification.221

The voltammetric response of NPs also depends on their other
properties, for example, size,220 surface coating,222 and
aggregation status.219 Thus, it remains challenging to use
voltammetry to analyze nanoparticles in complex environmental
samples.
Particle−electrode collision-based chronoamperometric tech-

niques have shown potential for quantitative analysis of
nanomaterials in aqueous matrices on a single particle basis.223

In a chronoamperometric measurement, the electrode potential
is held constant, and the electric current intensity as a function of
time (i.e., a chronoamperometric profile) is recorded. Typically,
multiple spikes (current transients) can be observed in a
chronoamperometric profile, each corresponding to a particle−
electrode collision event followed by electrooxidation of the
particle. The frequencies and charges of the current transients
are further translated into the concentrations and sizes of NPs.
Particle collision-based chronoamperometry via the electro-
oxidation mechanism, i.e., anodic particle coulometry (also
called particle impact chronoamperometry or the “nano-impact”
method), recently evolved into a relatively mature technique for
nanoparticle analysis and characterization.118,223−225 In addition
to measuring number concentrations and particle sizes, this
technique has demonstrated capabilities to determine the
morphologies of nanomaterials226 and to assess aggregation
states (e.g., irreversible or reversible aggregation).227,228 Despite
these capabilities, the performance of the “nano-impact”method
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in complex environmental matrices is yet to be validated,
particularly considering the potential influences of electroactive
constituents, such as NOM.
Size Fractionation Methods. Nanomaterials in the

environment are polydisperse in size, and it is critical to
accurately determine the particle size distributions of nanoma-
terials. Some of the methods discussed above (e.g., spICP-MS
and particle impact chronoamperometry) have shown capability
or potential to determine the size distributions of NPs in
complex aqueous matrices. It is also desirable to separate NPs
with different sizes prior to downstream analysis and character-
ization. Sequential filtration and (ultra)centrifugation have been
used as fractionation methods to separate colloids/NPs with
different sizes.175,229 Moreover, a variety of chromatography-
based and chromatography-like techniques have been developed
for more accurate size fractionation of NPs, including hydro-
dynamic chromatography (HDC), size exclusion chromatog-
raphy (SEC), FFF, capillary electrophoresis (CE), and electro-
spray-differential mobility analysis (ES-DMA).
HDC is a facile technique for separating particles and

macromolecules based on their sizes. The most commonly used
HDC columns are columns packed with nonporous microbeads
(as compared to porous microbeads in SEC columns), although
columns in other forms (e.g., open-tubular capillary230 and
microchip)231 are also available. Particles with different sizes
(and correspondingly different hydrodynamic diameters) are
separated as they flow through a packed bed column, due to
velocity gradients that develop within the capillaries between
microbeads. Larger particles elute faster because they spend less
time near the edges of the capillaries, where the linear velocity is
slower.232 HDC may be coupled to a range of analysis tools,
including DLS, multi-angle laser light scattering, UV−vis, and
fluorescence detectors.233−235 In particular, HDC coupled to
ICP-MS, either in the conventional or single particle mode, has
demonstrated great potential for separating and sizing NPs in
aqueous samples at relatively low concentrations (e.g., with
LOD values below 0.1 μg/L).232,236,237

In SEC, NPs with different sizes and dissolved metal ions/
complexes are separated after passing a liquid chromatography
column packed with porous micrometer-sized particles. The
largest NPs are eluted first, followed by smaller particles, and the
dissolved species are eluted last.238,239 The SECmethod coupled
to ICP-MS has been successfully used to separate and quantify
metallic (e.g., Ag and Au),240,241 metal oxide (e.g., NiO and
CeO2),

242 and metal sulfide (e.g., Ag2S)
243 NPs and their

corresponding metal ions in environmental water samples, as
well as Au and Ag NP in biological matrices, such as algae244 and
bacteria,77 after alkaline digestion or lysis. Note that SEC has so
far only been used for separating NPs with known sizes spiked in
aqueous samples or exposed to organisms. The capability of this
technique for analyzing samples with unknown sizes is yet to be
demonstrated.
FFF is a family of techniques widely used for the separation

and sizing of biomolecules, natural colloids, and ENMs.245 In
contrast to chromatography methods, fractionation in FFF takes
place in a thin, elongated channel without a stationary phase
under the action of an external field (e.g., centrifugal force or a
flow) perpendicularly applied to a laminar flow, in which the
analytes diffuse.25,246 Among different types of FFF techniques,
flow FFF (FlFFF), and particularly asymmetric FlFFF (AF4), is
the most commonly used one for separating and analyzing NPs
with different sizes. FlFFF can be coupled to a range of analysis
techniques, such as UV−vis, fluorescence, DLS, TEM, AFM,

and ICP-MS,247,248 and FlFFF coupled to ICP-MS has become a
powerful and popular tool for analyzing μg/L level nanomateri-
als in environmental matrices,246,247 such as wastewater163 and
river water.164 These sequential analytical methods combined
the advantages of FlFFF, such as the high size resolution over a
wide size range and minimal alteration to NP properties, and the
advantages of ICP-MS, such as high sensitivity and elemental
selectivity. As an alternative to AF4, hollow fiber FlFFF, which
uses a low-cost, disposable hollow fiber as the focusing/
relaxation channel, has been online coupled to ICP-MS and
achieved the separation and detection of Ag NPs in surface
waters with sizes down to 1.4 nm.249 In addition, sedimentation/
centrifugal FFF (SdFFF), which involves sedimentation of
particles due to centrifugal force, is the other type of FFF that
can be coupled to ICP-MS, and this technique is more suitable
for separating and analyzing NPs with larger densities and
sizes.246 Recently, the coupling of FlFFF and/or SdFFF to
spICP-MS enabled characterization of nanocomposite particles,
such as Ag@SiO2

250 and Au@Ag186 core−shell NPs, as well as
Au NPs contained in nanoplastic colloids.251 The FFF methods
may be utilized for fractionating NPs over a broad size range
(from one nanometer up to a few micrometers), and yet the loss
of NPs during the fractionation process is a problem that
remains to be addressed.
Capillary electrophoresis can separate NPs with different sizes

and surface charge properties. When suspended in aqueous
media, a variety of nanoparticles (e.g., metal oxide NPs, surface-
functionalized metallic and carbon-based nanomaterials) carry
surface charges. The charged NPs migrate driven by electro-
osmotic flow under the action of an external electric field and
exhibit electrophoretic mobilities that are proportional to the
charge-to-size ratios of spherical NPs, which enable their
fractionation by electrophoretic methods, including gel electro-
phoresis and CE.252 Compared to gel electrophoresis, CE
typically leads to more reproducible migration time and higher
size resolution,18 although run-to-run variation in migration
time possibly occurs in CE operation.253 Early studies on
electrophoretic separation of nanomaterials employed TEM,
hyperspectral imaging, UV−vis, and fluorescence spectroscopy
to analyze the nanomaterials.25 However, these analysis
methods typically work for nanomaterials at relatively high
concentrations, which makes corresponding electrophoretic
methods unsuitable for analyzing environmental samples.
Recently, CE was coupled to ICP-MS for the separation and
size characterization of Ag and Au NPs in complex matrices,
including river water and wastewater with LODs at the
submicrogram per liter level.254,255 Moreover, CE has been
coupled to spICP-MS to analyze Ag NPs with different sizes256

and surface coatings.257 However, the lack of matrix-matched
NP standards is currently a major factor limiting the application
of CE-based methods for analysis of nanomaterials in environ-
mental matrices.
The combination of electrospray with differential mobility

analysis, a common aerosol measurement technique,258,259 has
long been used for high-resolution size fractionations and
measurements of NPs in liquid suspensions.260−262 However,
the ES-DMA techniques, commonly equipped with a con-
densation particle counter as detector, are usually used to
analyze nanomaterials at relatively high concentrations (e.g.,
>0.1 mg/L),260 and the presence of nonvolatile salts or organic
compoundsmay cause analytical artifacts.262 Coupling ES-DMA
to ICP-MS can differentiate target nanomaterials (e.g., Au NPs)
from salt particles artificially produced during electrospray, and
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yet the detection limit is not significantly improved compared to
conventional ES-DMA with a condensation particle counter
detector.263 Recently, ES-DMA coupled to spICP-MS has
enabled accurate sizing and concentration determination of Au
NPs at environmentally relevant levels,264 as well as differ-
entiation of NPs with different morphologies (e.g., nanorods
versus nanospheres).265 Moreover, the independent determi-
nation of particle size by differential mobility analysis and
particle mass by spICP-MS allows the calculation of “apparent
density”, which can be used to differentiate between NP
mixtures versus aggregates.264

■ ENDURING CHALLENGES AND FUTURE
PERSPECTIVES

Recent methodological advances for the determination of the
abundance, morphology, composition, and structure of nano-
materials have focused on improving the analytical speed,
throughput, spatial resolution, and chemical sensitivity,
mitigating matrix effects in complex matrices and tracing the
sources and processes, as well as simultaneously providing
multifaceted information. These improvements have facilitated
research on identifying sources, environmental transformations,
and ecological/health effects of naturally occurring and
engineered nanomaterials. However, challenges remain to
further improve the performance and expand the applications
of the current methods. Emerging techniques may also be
tailored to future needs in the analysis and characterization of
nanomaterials to enhance a wide variety of environmental
applications.

(1) Quantitatively assessing the mass and number concen-
trations of nanoscale particles is an essential prerequisite
for accurate estimation of environmental behaviors and
risks of nanomaterials. Nevertheless, information regard-
ing abundance and morphology are often obtained from
different sample aliquots analyzed by different methods,
which may not be comparable due to the heterogeneous
nature of environmental samples. Only a few methods
simultaneously provide mass/number concentrations
together with size estimates and yet rarely achieve
satisfactory sensitivities for both parameters. For instance,
although themass detection limit of spICP-MS is as low as
sub-ng/L (corresponding to the particle number
detection limit on the level of 104 to 106 particles per
liter) for many elements,107−109 high size resolution
cannot be facilely attained for routine analysis of
environmental samples. It is particularly challenging to
analyze nanomaterials that tend to occur as small
monomers and aggregates in natural environments.
Mineral nanoparticles containing Hg and S often exhibit
primary particle sizes below 10 nm,9,266−268 whereas size
detection limits for these elements of environmental
significance are well above 10 nm even with the latest
instruments under optimized conditions,110 making
spICP-MS unsuitable for analyzing these NPs in the
environment. On the other hand, microscopic and
spectroscopic techniques with high spatial resolution
(Table 1) generally do not have the capability to
accurately quantify the concentrations of nanoparticles
in environmental samples. It is desirable that future
advances in instrumental hardware and data processing
will allow assessments of both abundances and
morphologies of nanomaterials and nanoconjugates in a

single run with improved chemical sensitivity and spatial
resolution. Toward this end, efforts are needed to develop
integrated platforms comprising online coupled high-
sensitivity quantification techniques and high-resolution
characterization (e.g., nanoSIMS).

(2) Despite the continuous development of the pretreatment
methods of complex environmental samples, a number of
nanomaterial properties, such as aggregation status and
surface composition, are inevitably altered during
extraction and preconcentration processes of nanoma-
terials, which likely lead to inaccurate estimation of the
characteristics and subsequent environmental behaviors
and impacts of nanomaterials. Therefore, in situ character-
ization techniques of nanomaterials in complex matrices
are needed. Notably, nanomaterials in environmental
samples are typically enveloped in “coronas”, which are
composed of adsorbed macromolecules (e.g., humic
substances, extracellular polymeric substances, and
proteins) and can significantly affect the environmental
fate and ecological effects of nanomaterials.269 In
biological matrices, nanomaterials are coated with a
variety of proteins and metabolites,270 and these
biomolecular coronas largely influence the behaviors,
fate, and biological effects of the nanomaterials.271,272 The
chemical composition and structure of the environmental
and biomolecular coronas are dynamic, and it is desirable
to develop in situ characterization techniques (at least,
pretreatment methods capable of maintaining nanoma-
terial integrity) to advance understanding of pertinent
structure−activity relationships. In particular, there is a
great need to develop techniques for in situ and real-time
analysis and characterization of nanomaterials in living
organisms (i.e., in vivo analysis), including the dynamic
composition and structure of environmental/biomolecule
corona on the surface of the nanomaterials. Current
methods for in situ corona analysis (e.g., fluorescence
correlation spectroscopy, isothermal titration calorimetry,
circular dichroism, and Raman spectroscopy) are not
sufficiently sensitive for environmental samples with low
nanomaterial concentrations.273 Advanced mass spectro-
metric techniques capable of ex situ analysis of NOM and
protein coronas (such as TOF-SIMS, electrospray
ionization ICP-MS, and Fourier transform ion cyclotron
resonance mass spectrometry)155,269,273 may be adopted
for in situ analysis of nanomaterials with coronas, when
properly interfaced to single particle analysis tools with
tailored sample introduction systems.

(3) Current studies have largely focused on metal-based and
elemental carbon-based nanomaterials (Figure 2), but
there recently have been increasing interests in the
environmental occurrence of other nanoscale materials,
including nanoplastics274,275 and biological nanoparticles
(e.g., viruses276,277 and plasmids).278,279 These emerging
nanoscale contaminants exhibit distinct environmental
behaviors and effects due to their unique physicochemical
properties. Moreover, some biological nanoparticles play
important roles in the transmittance of pathogenic276 or
antibiotic resistance genes,278,279 warranting fast and
accurate detection and characterization of these nanoscale
biological particles at low concentrations in the environ-
ment. Thus, there is a huge need for developing methods
to analyze and characterize these emerging nanoscale
contaminants in the environment. The analysis of
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nanoplastics in environmental matrices is a research
hotspot, but only a limited number of studies have dealt
with real environmental samples.275,280 So far, most
reportedmethods for separating, detecting, and character-
izing nanoplastics are adopted from the analyses of
microplastics and inorganic nanomaterials, and these
methods typically have size detection limits above 100
nm,275 although the latest Raman tweezers technique with
spatial resolution down to 50 nm has the potential to
lower this size detection limit.281,282 As with the analysis
of inorganic nanomaterials, only a limited number of
methods can simultaneously quantify the abundance and
characterize the composition or morphology of nano-
plastics in environmental matrices.280,283 Moreover, their
smaller size than microplastics and higher heterogeneity
than engineered nanoparticles makes nanoplastics more
challenging to analyze and characterize in environmental
samples.284 Hence, future research efforts on developing
analysis and characterization methods specific to the
structural and surface properties of nanoplastics are
warranted. Viruses and plasmids in the environment have
been detected by high-throughput nucleic acid sequenc-
ing tests, but the current analysis methods usually suffered
from low recoveries.285−287 Moreover, while providing
(semi)quantitative information on the abundance of
viruses and plasmids, these sequencing-based analysis
methods give no clue on the physicochemical properties
of the biological nanoparticles, and it is desirable to
develop methods to directly characterize the key proper-
ties dictating their environmental fate, for example, their
propensity to adhere to environmental surfaces.288

(4) The sustainable development and safe application of
nanotechnology require standardized methods for char-
acterizing the physicochemical properties, evaluating the
performances, and assessing the environmental risks of
nanomaterials.289 While standardized methods are
available for measuring the concentration and character-
izing the size, shape, composition, structure, and surface
chemistry of nanomaterials, few are designed for environ-
mental samples; for instance, among the suite of standards
developed so far by the International Organization for
Standardization (ISO) toward the analysis and character-
ization of nanomaterials, only two deal with nanomateri-
als in complex environmental matrices,290,291 which
largely focus on sampling, pretreatment, and detection
of nanomaterials. Ongoing and future efforts in this field
should place more emphasis on standard protocols
tailored to the characterization of nanomaterials with
low abundance and structural heterogeneity in the
environmental matrices with high degrees of complexity.
Notably, different types of environmental samples
containing nanomaterials pose different analytical chal-
lenges. Hence, standardized protocols of sample pretreat-
ment ought to be tailored according to specific environ-
mental matrices, and the standardized methods of
nanomaterial analysis and characterization ought to be
established with full consideration of the type and
properties of diverse nanomaterials. Such standards are
expected to effectively supplement existing standard
methods for reliable prediction of the environmental
risks of nanomaterials.

Overall, the biggest challenge for analysis and characterization
of nanomaterials in the environment arises from the dynamic
changes of nanomaterial properties in complex environmental
matrices. Artifacts associated with almost all current extraction
and preconcentrationmethods highlight the need for developing
methods capable of in situ, direct, and quantitative analysis and
characterization. This goal calls for improvement in chemical
sensitivity, response time, and spatial resolution of current
techniques. Moreover, integrated platforms enabled by online
coupling of in situ analysis and characterization techniques that
provide multifaceted information are essential for accurate
evaluation of the environmental behaviors and impacts of
nanomaterials. An adage commonly attributed to Peter Drucker,
an influential author in management theory and practice, says
that “we can only improve what we actually measure”.
Accordingly, emerging opportunities to improve nanomaterial
quantification and characterization methods are likely to
contribute to the beneficial impact and sustainability of the
growing nanotechnology industry.
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■ LIST OF ACRONYMS

AF4 = asymmetric FlFFF
AFM = atomic force microscope
CE = capillary electrophoresis
CNTs = carbon nanotubes
CPE = cloud point extraction
cryo-TEM = cryogenic TEM
DCS = differential centrifugal sedimentation
DLS = dynamic light scattering
Dmin = size detection limit
EDS = dispersive X-ray spectroscopy
EELS = electron energy loss spectroscopy
ENMs = engineered nanomaterials
ES-DMA = electrospray-differential mobility analysis
ESEM = environmental SEM
EXAFS = extended X-ray absorption fine structure
FFF = field-flow fractionation
FlFFF = flow FFF
HDC = hydrodynamic chromatography
ICP-MS = inductively coupled plasma mass spectrometry
IR = infrared
LA-ICP-MS = laser ablation ICP-MS
LCST = lower critical solution temperature
LOD = limit of detection
LPE = liquid-phase extraction
MC-ICP-MS = multicollector ICP-MS
nanoSIMS = nanoscale SIMS
NNMs = natural nanomaterials
NOM = natural organic matter
NP = nanoparticle
NIRF = near-infrared fluorescence
NTA = nanoparticle tracking analysis
SAED = selected area electron diffraction
SAXS = small-angle X-ray scattering
SdFFF = sedimentation/centrifugal FFF
SEC = size exclusion chromatography
SEM = scanning electron microscopy
SERS = surface-enhanced Raman spectroscopy
SIMS = secondary ion mass spectrometry
SPE = solid-phase extraction
spICP-MS = single particle ICP-MS
SPME = solid-phase microextraction
STEM = scanning TEM
TEM = transmission electron microscopy
TMAH = tetramethylammonium hydroxide
TOF = time-of-flight
TOF-SIMS = SIMS with a TOF mass analyzer
TX-114 = Triton X-114
XANES = X-ray absorption near edge structure
XAS = X-ray absorption spectroscopy
XRF = X-ray fluorescence
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