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ABSTRACT: Bacteriophages (phages) are an underutilized biological resource with vast
potential for pathogen control and microbiome editing. Phage research and
commercialization have increased rapidly in biomedical and agricultural industries, but
adoption has been limited elsewhere. Nevertheless, converging advances in DNA
sequencing, bioinformatics, microbial ecology, and synthetic biology are now poised to
broaden phage applications beyond pathogen control toward the manipulation of
microbial communities for defined functional improvements. Enhancements in
sequencing combined with network analysis make it now feasible to identify and disrupt
microbial associations to elicit desirable shifts in community structure or function,
indirectly modulate species abundance, and target hub or keystone species to achieve
broad functional shifts. Sequencing and bioinformatic advancements are also facilitating
the use of temperate phages for safe gene delivery applications. Finally, integration of
synthetic biology stands to create novel phage chassis and modular genetic components.
While some fundamental, regulatory, and commercialization barriers to widespread phage
use remain, many major challenges that have impeded the field now have workable solutions. Thus, a new dawn for phage-based
(chemical-free) precise biocontrol and microbiome editing is on the horizon to enhance, suppress, or modulate microbial activities
important for public health, food security, and more sustainable energy production and water reuse.
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■ INTRODUCTION

Bacteriophages (phages) are the most abundant, diverse, and
underutilized biological resource in the biosphere.1 These
viruses exclusively infect bacteria and utilize different life cycles
to shape microbial communities through predation, trans-
duction, and reprogramming of bacterial metabolism.2 Lytic
phages function as highly selective antimicrobial agents that
can control target bacteria with limited impact on the
surrounding microbial community. Conversely, temperate
phages can stably integrate their genomes into the bacterial
host genome (a process referred to as lysogeny3) and have the
potential to introduce genes that alter host function or fitness.
Beyond this, phages possess many innate characteristics that
make them attractive for “chemical-free” microbial control,
including specificity, replicative potential, the capacity to
mutate and coevolve with their host, a lack of residual toxicity,
and sustainable production.4

Since the realization by Feĺix d’Herelle in 1917 that phages
could kill bacteria,5 phage research has largely focused on
developing therapies to treat a small number of well-
characterized pathogens, with renewed interest primarily
driven by concerns over the emergence of multidrug resistant
bacteria.6,7 While phages are also being increasingly applied in
the food and agricultural industries,8,9 their adoption for
environmental engineering−including applications for more
sustainable energy production and water reuse−has received

limited attention (Figure 1). Expansion of phage applications
has been partly hampered by recent well-publicized failures of
phage therapy in clinical trials.10−13 Nevertheless, there are
many potential applications beyond their traditional use for
pathogen control in which phages could be an effective and
precise tool for manipulating more complex and dynamic
microbial communities to enhance, suppress, or modulate
specific microbial processes.
This article examines the current status of phage technology

and analyzes the main barriers preventing the transition from
proof-of-concept research to commercialization and expansion
of phage applications. We also discuss how the convergence of
advances in sequencing, bioinformatics, microbial ecology, and
synthetic biology is enabling microbiome editing and the
development of novel phage-based microbiome editing
strategies that contribute to sustainable development.
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■ EMERGING OPPORTUNITIES FOR PHAGE-BASED
BIOCONTROL

Sequencing with Higher Taxonomic Resolution May
Broaden Phage-Based Biocontrol Applications. Phage-
based biocontrol strategies have been proposed for numerous
challenges within environmental engineering, such as hydro-
carbon reservoir souring,14 biofouling,15,16 activated sludge
foaming and bulking,17,18 agricultural methane emissions,19

and harmful algal blooms.20 However, few of these proposed
applications have progressed further than lab-scale demon-
strations. The foremost exceptions to this are in the
agricultural sector in the use of phages as alternatives to
antibiotic feed additives,21 pesticides,22 or disinfectants,23 with
some products now commercially available and several more in
development (Figure 1). These products, and most biomedical
phage applications, are generally developed to control a single
well-defined bacterial target, while many proposed environ-
mental phage applications seek to address a specific property
or function of a microbial community, such as biofouling,
hydrocarbon reservoir souring, and microbial-induced corro-
sion. As most characterized phages are species- or strain-
specific,24 uncertainty of target species identity or the need to

control multiple species substantially increases implementation
difficulty relative to broad-spectrum antibiotics and biocides.
Understandably, the difficulty of designing a phage-based

biocontrol strategy is proportional to the number of species
encoding the metabolic function or property of concern. For
example, there are over 60 genera and 220 species of sulfate-
reducing bacteria25 that could be targeted to mitigate corrosion
or hydrocarbon reservoir souring. While phage cocktails that
target single species have been commercialized, attempting to
develop predefined cocktails for problems caused by multiple
species is impractical. In such circumstances, the use of system-
specific sequencing may be necessary to characterize the
microbial community at sufficient taxonomic resolution to
determine how many relevant species are present and in what
proportions. While just a few years ago this may have been
costly and challenging, recent advances in sequencing
technology and simultaneous reductions in cost have now
made this an accessible and routine task.26,27

Beyond knowledge of the microbial community composi-
tion, phage-based approaches benefit from detailed knowledge
of the target bacterium, recognizing that major functional
differences can exist between strains of the same bacterial
species. For example, E. coli Nissle 1917 is a probiotic strain
used to treat inflammatory intestinal diseases,28 while E. coli

Figure 1. Technology Readiness Level progress of phage applications in various fields. TRL 1-Ideation, TRL 2-Basic research, TRL 3-Proof-of-
concept, TRL 4-Small prototype, TRL 5-Pilot scale, TRL 6-Prototype system, TRL 7-Demonstration system, TRL 8-Commercial system, and TRL
9-Full commercialization. Selected applications are expanded in the accompanying table.

Environmental Science & Technology pubs.acs.org/est Feature

https://doi.org/10.1021/acs.est.1c06232
Environ. Sci. Technol. 2022, 56, 4691−4701

4692

https://pubs.acs.org/doi/10.1021/acs.est.1c06232?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06232?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06232?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06232?fig=fig1&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c06232?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


O157:H7 is a serotype that causes severe, acute hemorrhagic
diarrhea.29 Indeed, many strains of the same species share a
common core genome but may contain vastly different
accessory genomes, putatively as a result of extensive
horizontal gene transfer.30 Thus, high taxonomic resolution
of microbiome data is critical for informing and broadening
phage-based biocontrol or microbiome editing applications.
Previously, most microbiome studies utilized partial 16S rRNA
gene amplicons that typically only provide genus-level
resolution, which is insufficient for developing more selective
microbial control approaches.31−33 However, the development
of shotgun metagenomic sequencing and long-read sequencing
technologies has facilitated species-level analyses (in some
cases even strain-level) while also increasing data throughput,
reducing costs, and enhancing de novo genome assembly
accuracy.34 Indeed, starting from a phage lysate or environ-
mental sample, it is now possible to produce a fully annotated
phage genome or conduct a microbial community analysis in
less than a day, at higher accuracy and resolution than
previously possible.35,36 Such advances in sequencing are
enhancing the use of phages by providing detailed information
on their specific targets as well as their interactions with the
surrounding microbial community.
Network Analysis May Expand Phage Applications.

Historically, the analytical techniques used to study microbial
communities have focused on a standardized set of properties,
predominantly diversity metrics. Recently, the ever-increasing
size and number of high-resolution metagenomic data sets
have facilitated the application of network analysis toward
better understanding of complex microbial associations.
Network analysis enables the exploration of direct or indirect
interactions between coexisting microorganisms and possible
identification of keystone species.37,38 Indeed, several recent
microbiome studies have incorporated ecological network
analysis to explain the relationships between different taxa and
identify keystone species that are critical for community
stability and function.39−41 For example, Arthrobacter, Acid-
obacteria, Burkholderia, Rhodanobacter, and Rhizobium were
identified as keystone taxa across three agroforestry systems
and correlated with soil organic carbon content.42 Another
study in seawater found that biofilm formation on iron plates
coated with antifouling paint was initiated by Alteromonas
genovensis.43 Harnessing network analysis to target pertinent
bacterial taxa may expand phage applications, though current
models that predict microbial interactions are often generated
from pairwise experiments and co-occurrence networks, and
the relationships within microbial communities (which can
include hundreds if not thousands of taxa) are often inferred
based on the simplifying assumption that such interactions are
fixed rather than dynamic.44

More robust species-level network models have the potential
to transform phage-based biocontrol by identifying microbial
associations that can be disrupted to elicit desirable shifts in
microbial community structure or function. For example,
phage interventions are generally considered a “subtractive
technology” in that they can be used to clear niches and/or
suppress a particular species. However, the identification of
strong correlations via network analysis enables the use of
phages to indirectly increase species abundance by targeting
competitors, predators, or amensalistic bacteria (Figure 2a).
Multilayered biocontrol strategies can also be developed to
provide stronger or more durable bacterial inhibition by
creating phage cocktails that simultaneously target various

species with mutualistic, syntrophic, or commensalistic
interactions with the primary target for indirect suppression
(Figure 2b). Importantly, several studies have reported the
indirect modulation of species abundance after phage
application,45 which provides some precedent for this
approach. For example, ingestion of a probiotic in combination
with an E. coli phage cocktail decreased Desulfovibrio
concentrations and increased Lactobacillus colonization relative
to treatment with the probiotic alone.46 Indirect modulation of
species abundance can also be used in circumstances where the
primary target is too difficult to culture (for phage isolation
and production) or present at cell densities insufficient for
sustaining phage replication. In such cases, highly abundant
and culturable species could be aimed at by phages to disrupt
interactions benefiting the unculturable target species (e.g.,
cross feeding). In circumstances where an unwanted metabolic
pathway or activity is encoded by too many different species to
practically target, network analysis could be used to identify
hub or keystone species integral to the stability of that network
module or niche.
With current advances in accessibility and volume of

metagenomic sequencing,34 network models should be built
de novo for any environment in which phages might be used,
and phage-based perturbation studies should be conducted to
directly validate causation instead of relying on correlations.
Better understanding of the ecological relationships between
taxa and their respective phages not only advances general
scientific inquiry but also could concretely improve the ability
to edit complex microbiomes to improve the efficiency and
sustainability of some industrial processes.

Temperate Phage Selection, Applications, and
Manipulation Are Facilitated by Phage Genome
Sequencing and Improved Annotation. Historically,
lytic phages have been used to directly target pathogens or
other detrimental species of concern, while temperate phages
were typically avoided for therapeutic or biocontrol purposes.
This is due to their innate propensity to enter lysogeny, which
protects the lysogen (a bacterium containing a prophage) from
further infection and limits the initial bactericidal effect.3

Figure 2. Indirect fostering or suppression of growth of species of
interest by phage biocontrol. Novel phage biocontrol strategies to (A)
foster or (B) suppress the growth of other species of interest,
informed by advanced sequencing and omics analysis.
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Additionally, as prophage survival is linked to host survival,
many phages have acquired genes that enhance host fitness,
including some that may present safety issues. Despite these
concerns, temperate phages possess several advantageous
features, including the ability to deliver or disrupt specific
genes and propagate in environments suboptimal for lytic
lifecycles. Notably, the isolation of purely lytic phages can be
difficult for certain species (and in some cases has proven
impossible), while temperate phages are generally highly
abundant, with the majority of bacterial genomes deposited
in the National Center for Biotechnology Information database
containing prophage sequences.47 Thus, they can be much
easier to isolate and sometimes the only practical source of
phages for a given species. Once isolated, the editing of
temperate phages can be much more straightforward using
strategies such as recombineering instead of more conventional
cloning methods.48,49

Advances in sequencing technology have enabled rapid and
cost-effective characterization of phage genomes, which has
become an integral component of product development to
ensure the absence of genes encoding virulence factors, toxins,
or antibiotic resistance determinants. This enhanced capacity
to assemble and analyze phage genomes has renewed interest
in the use and development of temperate phages. Several
studies have reported successful inhibition when utilizing
temperate phages, individually,50,51 in cocktails,52 or in
combination with antibiotics. Moreover, virulent mutants of
temperate phages which have lost the capacity to enter
lysogeny through mutations or indels (genomic insertions or
deletions) have similar propagation dynamics and behavior to
lytic phages. Such phages occur spontaneously at low
frequency, though this process can be accelerated using
various in vitro methods.53−55 Low-cost sequencing makes it
feasible to screen such mutants and ensure they are truly lytic
and have a low probability of reversion. However, as many
phage genes have yet to be characterized, the use of temperate
phages should be constrained to low-risk applications or
situations where appropriate risk mitigation measures can be
implemented.
Phages as Gene Delivery Vectors. Beyond their use for

biocontrol, phages can also be harnessed for gene delivery, to
enable the host to produce natural or transgenic proteins,
including enzymes. For example, phages could be used to
deliver (or increase transcription of) genes for contaminant
biodegradation, biofilm disruption, or increased killing
efficiency of competing bacteria. Alternatively, unwanted
gene activity can be repressed without necessarily killing the
host to avoid selective pressure that might result in phage
resistance.56,57 When gene delivery strategies are informed by
prior microbial community characterization, the most abun-
dant species within a community can be targeted to ensure
phage proliferation and the highest levels of gene expression.
Moreover, harnessing the native community circumvents
challenges associated with survival of exogenous species58

−the most common cause of bioaugmentation failure. Yet,
despite the vast potential to engineer phages for such purposes,
transgenic manipulations would create significant regulatory
barriers for many environmental applications and need to be
carefully considered.
Though phage-mediated gene delivery has been proposed to

enhance the biodegradation capabilities of indigenous
bacteria,59 the vast majority of engineered phages is derived
from model phages (e.g., T7, M13) that infect only E. coli.60

The development of more efficient and universal methods of
phage engineering is needed to enable gene delivery to a wider
range of environmentally and industrially relevant species.
Alternatively, metagenomic sequencing has made it possible

to identify naturally occurring phages that already encode
important metabolic pathways. Such phages have the potential
to be utilized within a much more permissive regulatory
framework. For example, environmental viromes from arsenic-
and chromium-impacted soils were found to be enriched in
auxiliary metabolic genes (AMGs) involved in transport and
speciation of those metals.61,62 Theoretically, phages contain-
ing such AMGs could be isolated and used to enhance
microbial community resistance to metal-induced stress or to
control metal speciation for remedial purposes. Once identified
in a data set, AMG-containing phages could be isolated from
samples as prophages using media or enrichment cultures
selective for their host. Interestingly, recent studies investigat-
ing the effects of virome transplants in a murine model,63

between people,64−66 and even in soils45 have demonstrated
large shifts in microbiome composition and function, with
expansion of previously low abundance species possibly the
result of AMG acquisition. This highlights the role phages can
play as “additive” microbiome editing tools (e.g., by increasing
species growth) rather than simply serving as subtractive or
inhibitory agents.

Synthetic Biology Can Accelerate, Standardize, and
Enhance Phage Development for Broader Applications.
Through the application of engineering principles to biological
systems, synthetic biology stands to expand phage-based
technology by facilitating the creation of novel phage chassis
and modular genetic components. Several phage genomes have
been completely assembled using only synthetic DNA
oligonucleotides,67,68 allowing for rapid and large-scale genome
modification69 and refactoring70 while simultaneously circum-
venting low recombination efficiency associated with in vivo
genome engineering. Moreover, synthetic phage genomes can
be “rebooted” in nonhost71 or cell-free systems,72 which
suggests the potential for phage production against uncultur-
able hosts.
The significant relationship between phage research and

synthetic biology cannot be understated, as it has generated
various tools that advanced the ability to manipulate biological
organisms and biological systems. One example is the clustered
regularly interspaced short palindromic repeat (CRISPR)-
associated systems (Cas),73,74 a tool that enables precise
genetic manipulations in various of organisms for numerous
applications. Other examples are the use of integrases for the
generation of genetic circuits and sensors,75,76 the use of phage
RNA polymerases to control gene expression,77 and transcrip-
tional regulators for creation of biological switches and
oscillators.78 On the other hand, phage genome manipulation
has enabled the creation of phages harboring depolymerases
with enhanced ability to enzymatically disperse biofilms79 and
phages with extended host range and stability useful in
biomedical applications.80,81 There are also multiple examples
of phage proteins and substructures that can be used to design
biomaterials with highly tunable properties. A few worth
mentioning are phage-based nanomaterials for lithium-ion
batteries,82,83 phage capsid nanoparticles that can block viral
infection,84 and the use of M13 bacteriophage as piezoelectric
material to generate electrical energy85 among many others.
Overall, the ability to move, minimize, and refactor phage

genomes to later reboot them in wall-less bacteria or yeast71
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has reinvigorated interest and opened new avenues for high-
precision microbial manipulation. While the creation of
engineered phages presents substantial technical and regulatory
challenges, it also yields major benefits for intellectual property
protection, and standardization greatly accelerates new product
development. For example, imagine a universal phage chassis
that can be selectively targeted by only swapping out the
receptor binding domain. This would not only reduce the need
to isolate new phages, but culture optimization, scale up,
stability testing, purification process design, and formulation
would only need to be conducted once. The feasibility of such
a system is within reach because the mosaic nature of phages86

makes them well suited to swapping components through
promiscuous recombination. Though a streamlined system has
yet to be brought to market, there is a robust body of work
demonstrating that tail-fiber mutagenesis can broaden phage
host range,87 as well as design principles and strategies that
could be used to this end.88

■ IMPLEMENTATION BARRIERS AND ENABLING
STRATEGIES

Fundamental and Technological Implementation
Challenges. Many studies have demonstrated phage
applications in the laboratory but fail to translate these benefits
into the field. Issues that need to be considered include
whether phages can reach their hosts due to environmental
challenges (e.g., poor diffusion through biofilms or survival at
low pH), whether host concentrations are sufficient to sustain
lytic phage replication, and whether phages isolated and
developed under laboratory conditions are suitable for field use
(Figure 3). The combination of improved environmental
characterization and network analysis alongside strategies such
as in vitro adaptation, selection, or engineering of polyvalence89

to combat the challenge of narrow host ranges and the use of
natural or engineered phages conjugated with other nanoma-
terials90 may enable phage applications to succeed where they
have heretofore failed in industrial and environmental systems.

As with any emerging technology or material, unintended
consequences need to be considered to ensure that phage
applications evolve as a tool for sustainability rather than a
liability. This includes a proactive assessment of potential
disruption of microbial ecology. One common concern is the
potential for transduction and enhanced dissemination of
pathogenic or antibiotic resistance genes91−93 or other genes
that endow host bacteria with a competitive advantage that
results in detrimental consequences. For example, phages from
arsenic-resistant bacteria can transduce arsenic-resistance genes
such as arsC, which codes for As(V) reduction to excretable
(via efflux pumps) but more toxic As(III).61 This transduction
was observed to change arsenic speciation and increased soil
toxicity. Another unintended consequence is the counter-
intuitive stimulation of biofilm growth and densification by
polyvalent phages applied at relatively low concentration (e.g.,
104 pfu/mL),94 which might accelerate biofouling, biocorro-
sion, or other biofilm-related water quality problems. Another
concern is the fear of extensive phage use leading to
widespread phage resistance, ushering in another problem
akin to that of the spread of antibiotic resistance.95 However,
the tendency for phages to have a narrow host range near
eliminates the chance of horizontal gene transfer to distant
taxa, and bacterial immunity to phage via clustered regularly
interspaced short palindromic repeats (CRISPR) or mod-
ification of surface receptors is highly specific and unlikely to
provide adaptive value even in the unlikely event it is
disseminated to other genera.96

Regulatory Concerns and Commercialization Road-
blocks. Regulators want assurances that products will be safe,
effective, and standardized. The safety of eukaryotic organisms
from phages is inherent in phage biology; these viruses are only
able to infect and reproduce inside bacteria.97 Indeed, the
healthy human gut is estimated to host at least 1015 phage
particles at any given time, and investigations of interactions
between phages on eukaryotic immune and neurological
systems found no harmful effects.99 In terms of effectiveness,

Figure 3. Potential roadblocks and challenges facing phage applications on the road to commercialization. The challenge is in bold italics, and
possible strategies and solutions to overcoming these challenges are below.
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phage-based biocontrol applications in environmental and
industrial processes should recognize that phage therapy using
a single phage resulted in resistance development by the target
host in 7.5 to 85.7% of the cases, depending on the pathogen.99

Therefore, in the face of bacteria developing resistance to
phages, synergistic cocktails98 or sequential treatment should
be established as standard practice.
Well documented shortcomings and failures99−101 in clinical

phage therapy such as rapid resistance development and the
long and complicated road to approval as a medicine are of
lower concern in industrial and environmental applications.
Designating certain phage products as GRAS (Generally
Recognized as Safe) is a particularly favorable strategy to
overcome potential regulatory or public acceptance barriers
(Figure 3). In the case of engineered phages, differentiating
between cisgenic and transgenic modifications (which is the
strategy used by Pivot Bio to develop nitrogen fixing
biofertilizers102) may help streamline commercialization.
There is great potential that further research and testbed

demonstrations will overcome commercialization roadblocks
(Figure 3). A precedent was set by promising or proven phage
products currently on the market for medical and agricultural
applications. For example, an EPA approved phage product103

(XylPhi-PD) targets the etiologic agent of Pierce’s disease in
grapes (Xylella fastidiosa) and was shown to reduce the
abundance of this phytopathogen by several orders of
magnitude and eliminate this disease when administered
prophylactically.104 Another example is PreforPro, a phage
plus probiotic product produced by Deerland Probiotics &
Enzymes105 which was tested in a series of human clinical
studies46,106 and found to selectively reduce target organisms
without significant disruption of the gut community as well as a
reduction in gastrointestinal inflammation. Interest is clearly
resurging in the medical field also, through compassionate use
of phage therapy at the George Eliava Institute of
Bacteriophage, Microbiology and Virology (active since the
1930s in Tbilisi, Georgia and cofounded by D’Herelle),107

IPATH (the Center for Innovative Phage Applications and
Therapeutics - the first phage therapy center in the United
States in 2016 at the University of California, San Diego),108

and the recent efforts of the TAILΦR (Tailored Antibacterials
and Innovative Laboratories for phage (Φ) Research) initiative
at Baylor Medical School (Houston, Texas).109

■ OUTLOOK FOR FUTURE OPPORTUNITIES
Many success stories in the clinical realm are limited to tailored
treatment which is far removed from the vision of widely
distributed broad range phage preparations that make
attractive investments.110 However, as the sequencing and
network analysis technology advances, the use of phages as
microbiome editing tools could be approached more
holistically for faster innovation and broader commercializa-
tion. Expanding phage applications to environmental, indus-
trial, and more nuanced agricultural niches would be a logical
next step.
Advances in nucleotide sequencing technologies, omics

analyses, and data sciences are facilitating system-specific
characterization of microbiomes and associated ecological
networks to discern bacterial targets for customized (direct or
indirect) microbiome editing. Eventually, accessible “person-
alized” manipulations might even be possible for gut
microbiome development to enhance public health or for
other nontraditional applications discussed below. Realizing

this potential, however, will require obtaining and broadly
sharing species level microbiome and virome data from various
systems, which would be facilitated by more frequent
sequencing and publishing of isolated phage sequences, and
utilizing tools such as HI-C to better understand phage-host
linkages.111 The creation and expansion of public phage
libraries and banks, similar to those that exist for bacteria,
would also facilitate selection and formulation of phage
cocktails for various applications.
Precise microbiome editing opens unprecedented oppor-

tunities to enhance or suppress specific microbial activities,
which would expand phage applications beyond the traditional
use for controlling antibiotic-resistant pathogens in clinical
settings. Broader phage-based biocontrol applications could
include enhanced food security through higher crop
productivity and resilience to climate-related stress (e.g.,
rhizosphere or phyllosphere112 microbiomes edited to increase
water and nutrient retention or nitrogen fixation in soil or to
produce in planta growth-stimulating hormones), increased
feed efficiency for livestock production (e.g., rumen micro-
biome manipulations to mitigate nonproductive feed utiliza-
tion by methanogens), and mitigation of antibiotic resistance
propagation by animal agriculture (e.g., by replacing or
minimizing the use of antibiotics that exert selective pressure
for resistance development). Phage-based biocontrol could
also enhance chemical-free water treatment and reuse113 (e.g.,
to control Nocardia foaming in activated sludge systems114 and
harmful algal blooms115 in source waters, as well as biofouling
of filtration membranes, contactor surfaces,116 or storage
tanks). Microbiome manipulation could also bring significant
benefits to energy production, ranging from enhanced carbon
sequestration by increasing plant productivity, to mitigation of
methane or sulfide emissions. Other microbial activities
important to the energy industry that could be controlled
theoretically via phages include those associated with hydro-
carbon reservoir souring (mainly associated with sulfidogenic
bacteria) and associated infrastructure corrosion (Figure 1).117

Synthetic biology could be a revolutionary approach to
empower lysogenic and filamentous phages as gene delivery
vectors to endow indigenous bacteria with enhanced fitness or
novel metabolic capabilities for bioremediation or biorefining
purposes. Other properties that could be engineered in phages
include altering tail fibers to be used as biosensors or enabling
phages to display proteins that serve as selective adsorbents to
recover rare earth metals or other high-value elements (Figure
4). Nevertheless, genetic engineering of phages will likely face

Figure 4. Phage components that could be modified by synthetic
biology to enable phage-based microbiome editing and other
functions.
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some regulatory and public acceptance hurdles, particularly if
the genetic manipulations are transgenic rather than cisgenic.
Similar to other emerging technologies, phage-based

biocontrol for nontraditional applications will need to carefully
consider and mitigate potential system-specific failure modes
and unintended consequences. Proactive risk assessment will
be important to enhance public and regulatory acceptance.
Overall, we have come a long way since d’Herelle first
proposed phage therapy, and phage-based biocontrol is likely
to experience a renaissance inspired by novel, chemical-free
strategies to edit microbiomes and enhance, suppress, or
modulate microbial processes important for sustainable
development.
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