

Contents lists available at ScienceDirect

# Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere



# Quantification of photocatalytically-generated hydrogen peroxide in the presence of organic electron donors: Interference and reliability considerations

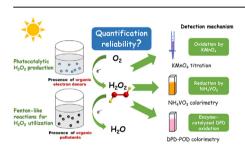


Yan Wei <sup>a</sup>, Jingzhen Zhang <sup>a</sup>, Qian Zheng <sup>a</sup>, Jie Miao <sup>a</sup>, PedroJ.J. Alvarez <sup>b</sup>, Mingce Long <sup>a, \*</sup>

- <sup>a</sup> School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
- <sup>b</sup> Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, United States

#### HIGHLIGHTS

- Organic electron donors interfere with photo-generated H<sub>2</sub>O<sub>2</sub> quantification.
- KMnO<sub>4</sub> titration and NH<sub>4</sub>VO<sub>3</sub> or DPD-POD colorimetry were compared for H<sub>2</sub>O<sub>2</sub> detection.
- The accuracy of the KMnO<sub>4</sub> titration method is compromised by aromatic compounds.
- P-benzoquinone reacts with NH<sub>4</sub>VO<sub>3</sub> and DPD and interferes with H<sub>2</sub>O<sub>2</sub> quantification.
- A flowchart that helps to select a suitable H<sub>2</sub>O<sub>2</sub> detection method is provided.


### ARTICLE INFO

Article history:
Received 1 March 2021
Received in revised form
6 April 2021
Accepted 9 April 2021
Available online 12 April 2021

Handling Editor: E. Brillas

Keywords: Hydrogen peroxide detection Organic interference Photocatalysis In-situ H<sub>2</sub>O<sub>2</sub> production Fenton-like reactions

### G R A P H I C A L A B S T R A C T



### ABSTRACT

Photocatalytic H<sub>2</sub>O<sub>2</sub> production is an innovative on-site H<sub>2</sub>O<sub>2</sub> synthesis method to treat organic pollutants through Fenton-like reactions, avoiding the need and potential liability of H2O2 storage and transportation. Accurate quantification of H<sub>2</sub>O<sub>2</sub> is crucial to explore the mechanism of photocatalytic H<sub>2</sub>O<sub>2</sub> production and optimize reaction parameters. In this work, three common H<sub>2</sub>O<sub>2</sub> quantification methods (i.e., titration with potassium permanganate (KMnO<sub>4</sub>), and colorimetry with ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) or N,N-diethylp-phenylenediamine-horseradish peroxidase (DPD-POD)) were compared and their susceptibility to interference by seven types of representative organics were considered. Interference mechanisms were explored based on the electron-donating (Egap) and electronaccepting (E<sub>IJMO</sub>) ability of the present organics. The accuracy of the KMnO<sub>4</sub> titration method is greatly compromised by aromatic compounds even at 0.1 mM due to the increased KMnO<sub>4</sub> consumption by direct oxidation. The presence of p-benzoquinone that directly reacts with NH<sub>4</sub>VO<sub>3</sub> and DPD compromises these colorimetric methods, especially DPD-POD colorimetry at concentrations as low as 0.1 mM. The DPD-POD method should also be scrutinized in the presence of phenols due to significant disturbance by oxidation byproducts (e.g. hydroquinone inducing immediate color disappearance). A flowchart was generated to provide guidelines for selecting an appropriate H2O2 quantification method for different water matrices treated by Fenton-like reactions.

© 2021 Elsevier Ltd. All rights reserved.

E-mail address: long\_mc@sjtu.edu.cn (M. Long).

Corresponding author.

#### 1. Introduction

Hydrogen peroxide ( $H_2O_2$ ) is a green oxidant that is commonly used in environmental remediation, especially advanced oxidation processes (AOPs) for water treatment since it can generate highly oxidizing hydroxyl radicals ( $\bullet$ OH) and produce only water as a byproduct (Miklos et al., 2018; Huang et al., 2020). Currently, commercial  $H_2O_2$  is mainly produced by anthraquinone method, which is limited by high energy consumption and organic by-products generation (Campos-Martin et al., 2006; Gao et al., 2020). Moreover, the instability of the synthesized high-concentration  $H_2O_2$  results in safety problems during storage and transportation. Therefore, the on-site production of  $H_2O_2$  in practical concentrations has drawn significant interest (Perry et al., 2019; Pi et al., 2020).

Photocatalytic H<sub>2</sub>O<sub>2</sub> production is a novel on-site H<sub>2</sub>O<sub>2</sub> synthesis method that only needs water and oxygen as raw materials, and light as energy input (Fukuzumi et al., 2018; Hou et al., 2019; Sun et al., 2020). In the present studies, H<sub>2</sub>O<sub>2</sub> production processes are achieved mainly by oxygen reduction reactions (ORR). Semiconductor photocatalysts, such as TiO2 (Zheng et al., 2018; Wang et al., 2019), g-C<sub>3</sub>N<sub>4</sub> (Shiraishi et al., 2014) and their modifications (Chu et al., 2020; Feng et al., 2020a; Lu et al., 2020), are excited by light to produce photo-generated electron-hole pairs, and the photo-generated electrons can react with oxygen through oneelectron or two-electron pathways to generate H<sub>2</sub>O<sub>2</sub>. Organic electron donors, especially alcohols, are often added to accelerate separation of electron-hole pairs and promote H<sub>2</sub>O<sub>2</sub> production (Zhang et al., 2020b). The concentration of photo-generated H<sub>2</sub>O<sub>2</sub> is usually in the micromole to millimolar level, which can be utilized for in-situ degradation of refractory organic pollutants, such as aromatic compounds (Luo et al., 2010; Asghar et al., 2015; Xiong et al., 2019). Due to the significance of H<sub>2</sub>O<sub>2</sub> to wastewater treatment, accurate quantification of H<sub>2</sub>O<sub>2</sub> is of vital importance for optimizing in situ generation and reaction conditions.

H<sub>2</sub>O<sub>2</sub> quantification methods can be classified into methods based on the involvement of H<sub>2</sub>O<sub>2</sub> into redox reaction or not. The usually employed methods are based on the H<sub>2</sub>O<sub>2</sub> reactivity in redox reactions, such as colorimetric, fluorescence, and chemiluminescence approaches (Nosaka and Nosaka, 2017). However, there are very few methods can directly detect H<sub>2</sub>O<sub>2</sub> without the occurrence of redox reactions but demanding advanced equipment (Song et al., 2017). In photocatalytic H<sub>2</sub>O<sub>2</sub> production and Fentonlike reactions, the most widely used H<sub>2</sub>O<sub>2</sub> quantification methods are titration with potassium permanganate (KMnO<sub>4</sub>) (Hirakawa et al., 2016; Kofuji et al., 2018; Zhu et al., 2020), and colorimetry with ammonium metavanadate (NH<sub>4</sub>VO<sub>3</sub>) (Trovo et al., 2009; Mendez-Arriaga et al., 2010; Pan et al., 2018) or with N,N-diethylpphenylenediamine-horseradish peroxidase (DPD-POD) (Zhao et al., 2014; Shi et al., 2018; Zhang et al., 2020c). These three methods are based on the oxidability, reducibility, and enzyme-catalyzed oxidation of the detection reagent, respectively (Huckaba and Keyes, 1948; Bader et al., 1988; Nogueira et al., 2005). They are easy to apply, and their quantification range matches the concentration of H<sub>2</sub>O<sub>2</sub> involved in the reactions of generation and utilization (Table S1).

Although the accuracy of these methods has been established in simple systems, their reliability in the context of photocatalytic  $H_2O_2$  production and Fenton-like reactions during treatment of common pollutants has barely been systematically compared. A recent research by Gill and Zheng (2020) suggests that some anions and aliphatic organics in the electrolytes may interfere with the quantification of electrochemically generated  $H_2O_2$ . Considering that organic compounds are susceptible to redox reactions during  $H_2O_2$  detection, it is necessary to re-evaluate the accuracy of

different  $H_2O_2$  detection methods and clarify the underlying interference mechanisms by different compounds in photocatalytic  $H_2O_2$  production systems and Fenton-like reactions

In this work, the KMnO<sub>4</sub> titration, NH<sub>4</sub>VO<sub>3</sub> colorimetric and DPD-POD colorimetric  $H_2O_2$  quantification methods are compared in photocatalytic systems, and interference effects and mechanisms by seven organic compounds are considered. To assess variability in photocatalytic  $H_2O_2$  production yields, three  $H_2O_2$  concentrations ranging from micromolar to millimolar levels are selected (i.e., low-(50  $\mu$ M), medium- (200  $\mu$ M) and high-concentrations (1000  $\mu$ M)). This work therefore informs the selection of suitable  $H_2O_2$  quantification methods for studies and optimization efforts involving photocatalytic and Fenton-like advanced oxidation processes.

# 2. Experimental section

# 2.1. Reagents

Hydrogen peroxide (30 wt%), potassium permanganate, ammonium metavanadate, sulfuric acid (H<sub>2</sub>SO<sub>4</sub>), absolute ethanol, acetaldehyde, acetic acid, acetone, phenol, *p*-benzoquinone and bisphenol A were analytical grade and purchased from Sinopharm Chemical Reagent Co. Ltd. N,N-diethylp-phenylenediamine (DPD) and horseradish peroxidase (POD) were procured by Sigma Aldrich Co. Ltd. All reagents were used without further purification.

# 2.2. Analytic procedure

To evaluate the influence of coexisting organics on photogenerated  $H_2O_2$  detection, some commonly used organic sacrificial agents and/or target pollutants and their oxidation intermediates were selected. They were four aliphatic organics: ethanol, acetaldehyde, acetic acid, acetone, and three aromatic organics: phenol, p-benzoquinone and bisphenol A. Different concentrations of organics (0.1, 1 mM, and 10 mM) were added to the  $H_2O_2$  solutions at low (50  $\mu$ M), medium (200  $\mu$ M), and high (1000  $\mu$ M) concentrations.  $H_2O_2$  concentration was tested by KMnO<sub>4</sub> titration method, NH<sub>4</sub>VO<sub>3</sub> colorimetric method, and DPD-POD colorimetric method. The influence of coexisting organics on  $H_2O_2$  quantification was expressed by relative errors (Eq. (1)). All the experiments were conducted in triplicate, and results are presented as mean values and standard deviations.

Relative error = 
$$\frac{c_{measured} - c_{true}}{c_{true}} \times 100\%$$
 (1)

The specific detection procedures for the three methods are as follows

KMnO<sub>4</sub> titration method: The concentration of KMnO<sub>4</sub> solution (about 0.02 M) was standardized by sodium oxalate (Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>) at 70 °C. Then 35 mL of H<sub>2</sub>O<sub>2</sub> samples including 2.5 mL of 6 M H<sub>2</sub>SO<sub>4</sub> were titrated dropwise by the calibrated KMnO<sub>4</sub> solution until a faint pink color persisted for 30 s (Huckaba and Keyes, 1948). The concentration of H<sub>2</sub>O<sub>2</sub> was calculated based on the consumed volume of KMnO<sub>4</sub> solution.

 $NH_4VO_3$  colorimetric method: 31 mmol  $NH_4VO_3$  powder was dissolved in 10 mL of  $H_2SO_4$  solution (9 M). After cooling to room temperature, the solution was adjusted to 500 mL with deionized water to obtain  $NH_4VO_3$  solution. To detect  $H_2O_2$  concentration, 1 mL of  $NH_4VO_3$  solution and 1 mL of sample were added to a colorimetric tube and diluted to 10 mL with deionized water. After developing color for 10 min, the absorption of solution was detected by a UV-Vis spectrophotometer (TU-1810, Persee) at  $\lambda = 450$  nm (Nogueira et al., 2005; Molamahmood et al., 2020).

DPD-POD colorimetric method: 3 mL of phosphate buffer

(0.5 M, pH = 6), 1 mL of sample, 50  $\mu$ L of DPD solution (10 mg mL $^{-1}$ ) and 50  $\mu$ L of POD solution (1 mg mL $^{-1}$ ) were successively added to a colorimetric tube and diluted to 10 mL using deionized water. After developing color for 30 s, the absorbance was analyzed at 551 nm on a UV–Vis spectrophotometer (Bader et al., 1988; Wei et al., 2019).

#### 2.3. Computational assessments

To clarify the redox properties, energy of the highest occupied molecular orbital ( $E_{LUMO}$ , eV) and the lowest unoccupied molecular orbital ( $E_{LUMO}$ , eV) of organic compounds were calculated by the Gaussian 09 W software. M06-2X coupled with 6–311++G(d, p) basis set using the universal solvation model based on solute electron density was used to calculate the optimized geometry and vibrational frequencies (Su et al., 2020). The gap of  $E_{LUMO}$  and  $E_{HOMO}$  ( $E_{gap}$ , eV) was calculated as  $E_{gap} = E_{LUMO}$  -  $E_{HOMO}$ .

### 3. Results and discussion

# 3.1. Reliability of KMnO<sub>4</sub> titration method

KMnO<sub>4</sub> titration method is based on the reaction described by Eq. (2), where the highly oxidizing MnO<sub>4</sub><sup>-</sup> (purple-red in color) can be reduced by H<sub>2</sub>O<sub>2</sub> to generate colorless Mn<sup>2+</sup> under acidic conditions (Klassen et al., 1994). According to the KMnO<sub>4</sub> concentration (c<sub>KMnO<sub>4</sub></sub>) and its consumed volume (V<sub>KMnO<sub>4</sub></sub>) during the titration, the H<sub>2</sub>O<sub>2</sub> concentration (c<sub>H<sub>2</sub>O<sub>2</sub></sub>) can be calculated by Eq. (3). The detection limit of this method was 0.3  $\mu$ M (Klassen et al., 1994; Song et al., 2017).

$$5H_2O_2 + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$
 (2)

$$c_{H_2O_2} = \frac{5}{2} \times \frac{c_{KMnO_4} \times V_{KMnO_4}}{V_{H2O2}}$$
 (3)

The effect of aliphatic and aromatic organics on H<sub>2</sub>O<sub>2</sub> quantification by the KMnO<sub>4</sub> titration method is shown in Fig. 1. Alcohols are frequently used as the electron donors for photocatalytic H<sub>2</sub>O<sub>2</sub> production, and aldehydes, ketones and carboxylic acids are common byproducts that may accumulate in the solution (Tsukamoto et al., 2012; Zhang et al., 2020a). For aliphatic organics (Fig. 1a-1c), the presence of ethanol or acetaldehyde leads to a significant overestimation of H<sub>2</sub>O<sub>2</sub> concentration. The relative error increases with the increase of ethanol or acetaldehyde concentration (from 36% to 64% for ethanol and from 33% to 49% for acetaldehyde when  $H_2O_2$  concentration is 50  $\mu M$ ). In contrast, the presence of acetic acid or acetone exhibits much less influence on H<sub>2</sub>O<sub>2</sub> quantification. These differences in extent of interference can be explained by differences in the electron donating ability of chemicals, which was assessed by the HOMO-LUMO gap ( $E_{\text{gap}}$ ). Since the low Egap facilitates electron transfer and donation, compared with ethanol (9.73 eV) and acetaldehyde (9.57 eV), acetic acid (10.22 eV) exhibits the lowest reactivity with KMnO<sub>4</sub> (Table 1) (Karelson et al., 1996; Shao et al., 2020). Although acetone shows a low theoretical E<sub>gap</sub> value (9.24 eV), it performs negligible disturbance on the measured results of KMnO<sub>4</sub> titration method. This may be ascribed to its higher half-wave potential, leading to less potential to be oxidized by KMnO<sub>4</sub> than aldehydes with similar structure (E(acetone)<sub>1/2</sub> = -1.52 V vs. saturated calomel electrode (SCE) and E(acetaldehyde) $_{1/2} = -1.89$  V vs. SCE) (Speight, 2005; Zhou et al., 2020).

The presence of the three tested aromatic organics can induce enormous errors in H<sub>2</sub>O<sub>2</sub> quantification by this titration method (Fig. 1d—f). Among them, phenol is a common pollutant in Fenton-

like reactions, p-benzoquinone is a possible oxidation intermediate, and bisphenol A is a refractory emerging contaminant. For a  $\rm H_2O_2$  sample with a known concentration of 50  $\mu$ M, p-benzoquinone induces the largest relative error (873% for 0.1 mM or 10.8 mg L<sup>-1</sup>), followed by phenol (496% for 0.1 mM or 9.4 mg L<sup>-1</sup>) and bisphenol A (241% for 0.1 mM or 22.8 mg L<sup>-1</sup>). These differences in the extent of interference can be ascribed to their  $\rm E_{gap}$  values as well. The  $\rm E_{gap}$  for phenol, p-benzoquinone, and bisphenol A are 7.93 eV, 6.87 eV and 7.33 eV, respectively (Table 1). Among them, p-benzoquinone is highly susceptible to be oxidized by KMnO<sub>4</sub>, which increases the consumption of KMnO<sub>4</sub>, thus increasing the measured  $\rm H_2O_2$  concentration. Since 1.0 mM of aromatic organics can bring a thousand-fold relative error to the measurement of 50  $\mu$ M  $\rm H_2O_2$ , the effect of 10 mM of organics was not further explored in this method.

The accuracy of this method is more susceptible to interference by organics when the  $\rm H_2O_2$  concentration is low. For example, with the presence of ethanol or acetaldehyde, the measured results for low- (50  $\mu M)$  and medium-concentration (200  $\mu M)$   $\rm H_2O_2$  samples exhibit significant relative errors. But the relative errors decrease to a low level when the actual  $\rm H_2O_2$  concentration is 1000  $\mu M$ . Accordingly, when aliphatic organics are present in photocatalytic reactions, the KMnO<sub>4</sub> titration method is only suitable for quantifying high-concentration  $\rm H_2O_2$  (above 1000  $\mu M$ ). Aromatic organics can result in tremendous relative errors even for 1000  $\mu M$   $\rm H_2O_2$  (>50% when organic concentration is 0.1 mM and >500% when organic concentration is 1.0 mM). Thus, the KMnO<sub>4</sub> titration method is not advisable for  $\rm H_2O_2$  quantification with the presence of aromatic organics.

# 3.2. Reliability of NH<sub>4</sub>VO<sub>3</sub> colorimetric method

In the NH<sub>4</sub>VO<sub>3</sub> colorimetric method, ammonium metavanadate serves as a reductant to react with H<sub>2</sub>O<sub>2</sub> in acidic medium. The generated peroxovanadium cations display red-orange color and absorb strongly at 450 nm (Eq. (4)) (Nogueira et al., 2005). Accordingly, the concentration of H<sub>2</sub>O<sub>2</sub> can be calculated from the measured absorbance by the standard curve, which is shown in Fig. S1. The absorbance is linearly related to H<sub>2</sub>O<sub>2</sub> concentration in the range of 0–40,000  $\mu$ M (R² = 0.9999). The limit of detection is 65.8  $\mu$ M according to 3 $\sigma$ /k, where  $\sigma$  represents the standard deviation of the y-intercept and k is the slope of the curve. Therefore, NH<sub>4</sub>VO<sub>3</sub> colorimetric method is suitable for the quantification of H<sub>2</sub>O<sub>2</sub> at medium and high concentrations.

$$VO_3^- + 4H^+ + H_2O_2 \rightarrow VO_2^{3+} + 3H_2O$$
 (4)

Fig. 2 displays the effect of various organic compounds on the quantification of  $\rm H_2O_2$  by NH<sub>4</sub>VO<sub>3</sub> colorimetric method. The relative errors caused by the presence of organics in this method are much smaller than those in KMnO<sub>4</sub> titration method. The measured  $\rm H_2O_2$  concentration is relatively more accurate in the presence of only aliphatic organics, and the maximum relative error is 11%, which occurs for the case of the coexisting of 10 mM acetic acid (i.e. 600 mg  $\rm L^{-1}$ ) and 1000  $\rm \mu M$  H<sub>2</sub>O<sub>2</sub> (Fig. 2a and b). This can be attributed to the strongest electron accepting ability of acetic acid in the four aliphatic organics, since it has the minimum  $\rm E_{LUMO}$  (0.14 eV, Table 1) (Karelson et al., 1996; Avigdori et al., 2020). Therefore, acetic acid is likely to be reduced by NH<sub>4</sub>VO<sub>3</sub> or react with NH<sub>4</sub>VO<sub>3</sub> intermediates, and accordingly disturb the measured  $\rm H_2O_2$  concentrations.

As for aromatic organic compounds, both phenol and bisphenol A caused minor interference on the measured results, with relative errors less than 5% and 3%, respectively (Fig. 2c and d). After subtracting the background absorbance of *p*-benzoquinone solution,

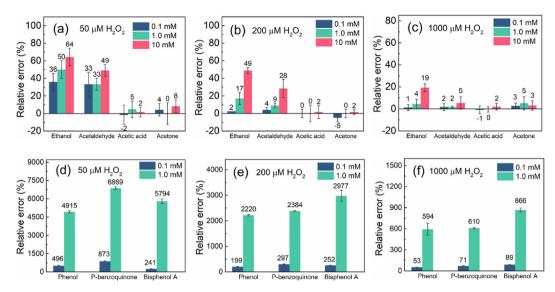



Fig. 1. The effect of aliphatic  $(\mathbf{a}, \mathbf{b} \text{ and } \mathbf{c})$  and aromatic  $(\mathbf{d}, \mathbf{e} \text{ and } \mathbf{f})$  organics on the quantification of  $H_2O_2$  in KMnO<sub>4</sub> titration method.

**Table 1** The  $E_{HOMO}$ ,  $E_{LUMO}$  and  $E_{gap}$  of organic compounds.

| Organics       | E <sub>HOMO</sub> (eV) | E <sub>LUMO</sub> (eV) | E <sub>gap</sub> (eV) |
|----------------|------------------------|------------------------|-----------------------|
| Ethanol        | -9.56                  | 0.17                   | 9.73                  |
| Acetaldehyde   | -9.28                  | 0.29                   | 9.57                  |
| Acetic acid    | -10.08                 | 0.14                   | 10.22                 |
| Acetone        | -9.10                  | 0.15                   | 9.24                  |
| Phenol         | -7.78                  | 0.15                   | 7.93                  |
| P-benzoquinone | -9.51                  | -2.64                  | 6.87                  |
| Bisphenol A    | -7.32                  | 0.01                   | 7.33                  |

0.1 mM p-benzoquinone exhibits negligible effect (relative errors < 1%) on the detected results. The effect of 1.0 mM p-benzoquinone is also small, and the relative errors are 13% and 1% for the medium- and high-concentration  $H_2O_2$ . However, 10 mM p-benzoquinone leads to a 75% exaggerated estimation of the medium-concentration of  $H_2O_2$ , while the relative error decreases to 12% when the  $H_2O_2$  concentration increases to 1000  $\mu$ M. The interference of p-benzoquinone on  $H_2O_2$  determination in NH<sub>4</sub>VO<sub>3</sub> colorimetric method can also be explained by its unique reactivity. The  $E_{LUMO}$  of p-benzoquinone (-2.64 eV) is much lower than that of phenol (0.15 eV) and bisphenol A (0.01 eV), so p-benzoquinone is more electron-withdrawing and easier to be reduced by ammonium metavanadate or the intermediates (Gao et al., 2021).

These results infer that when the  $H_2O_2$  concentration in the reaction systems is relatively high (above 1000  $\mu$ M), the detection results of NH<sub>4</sub>VO<sub>3</sub> colorimetric method are relatively reliable, and the disturbance by the presence of organics is negligible. For reaction systems with the medium-concentration (200  $\mu$ M) of H<sub>2</sub>O<sub>2</sub>, the tested results are also relatively accurate in the presence of aliphatic organics or low-concentration aromatic organics (below 1.0 mM). However, the presence of high concentration of *p*-benzoquinone (above 10 mM) can induce a sizable relative error for the medium-concentration of H<sub>2</sub>O<sub>2</sub>. Considering that benzoquinones are the intermediates of phenol oxidation in the photocatalytic processes (Liu et al., 2008), even though phenol shows little effect on the accuracy of tested results, the NH<sub>4</sub>VO<sub>3</sub> colorimetric method should be scrutinized when high-concentrations (above 1.0 mM) of phenols and/or benzoquinones are present.

# 3.3. Reliability of DPD-POD colorimetric method

DPD-POD colorimetric method was developed in 1988 by H. Bader et al. and has been broadly used in photocatalytic systems for H<sub>2</sub>O<sub>2</sub> quantification (Table S1) (Bader et al., 1988). This method relies on the POD-catalyzed DPD oxidation (Fig. 3a). H<sub>2</sub>O<sub>2</sub> can oxidize POD into a higher valent state intermediate, which subsequently oxidizes DPD molecules to radical cations with imine group (DPD<sup>+</sup>), H<sub>2</sub>O<sub>2</sub> concentration can be determined by measuring the absorbance of the pink colored DPD<sup>+</sup> at 551 nm. Fig. S2 displays the standard curve of the DPD-POD colorimetric method. In the concentration range of 0-400 µM, the absorbance presents a highly linear response with  $H_2O_2$  concentration ( $R^2 = 0.9992$ ). The detection limit of this method is calculated to be 7.1 µM according to  $3\sigma/k$ . Consequently, the DPD-POD colorimetric method can be directly used to quantify the low- (50 µM) and mediumconcentration (200 µM) H<sub>2</sub>O<sub>2</sub> samples, while the highconcentration (1000 µM) H<sub>2</sub>O<sub>2</sub> samples are diluted for 10 times before detection.

The DPD-POD colorimetric method failed to reliably quantify  $H_2O_2$  concentration in the presence of p-benzoquinone even at a low concentration (0.1 mM). As shown in Fig. S3, in the absence of  $H_2O_2$ , a pink color appears after adding DPD to a p-benzoquinone solution. The generated product also exhibits absorption at 551 nm, and the absorbance induced by 0.1, 1.0 mM and 10 mM p-benzoquinone equals to 55, 116  $\mu$ M and 213  $\mu$ M  $H_2O_2$ , respectively. The formation of the pink product is due to the direct reaction between p-benzoquinone and DPD, which generates quinone imine (pink in color), a similar oxidation product of DPD in DPD-POD colorimetric method (Fig. 3b) (Bontschey, 1962; Maleki and Nematollahi, 2011).

The effect of the other organics except p-benzoquinone on the quantification of  $H_2O_2$  is shown in Fig. 4. Regardless of the  $H_2O_2$  concentration, relative errors caused by the co-occurring organics are negligible (<8%). This result demonstrates the robust anti-interference ability of the DPD-POD colorimetric method, which can be attributed to the high selectivity of peroxidase. However, although the relative error caused by phenol is negligible, the DPD-POD colorimetric method is also not satisfactory for  $H_2O_2$  quantification in the presence of phenolic substances due to the

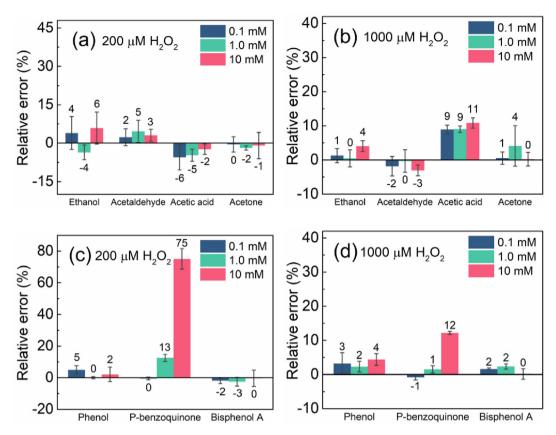
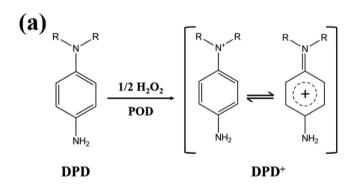
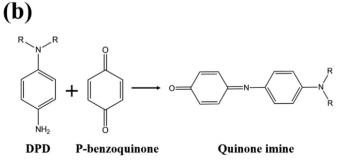





Fig. 2. The effect of aliphatic ( $\mathbf{a}$  and  $\mathbf{b}$ ) and aromatic ( $\mathbf{c}$  and  $\mathbf{d}$ ) organics on the quantification of  $H_2O_2$  in  $NH_4VO_3$  colorimetric method.





**Fig. 3.** (a) The formation of imine in DPD-POD colorimetric method (Bader et al., 1988) and (b) the formation of quinone imine in the reaction between DPD and *p*-benzo-quinone (Bontschev, 1962; Maleki and Nematollahi, 2011).

interference of their oxidation intermediates. The direct reactions between the benzoquinone intermediates of phenols and DPD lead to the formation of interfering imines, which eventually result in erroneous measured  $\rm H_2O_2$  concentration. The production of hydroquinone, another intermediate with high reduction potential ( $\rm E_{gap}=5.30~eV)$  in phenol oxidation, induces significant errors in  $\rm H_2O_2$  detection due to immediate decolorization of DPD $^+$  (Fig. S4). The appearance of hydroquinone results in a drastically underestimated  $\rm H_2O_2$  concentration since the reduction of DPD $^+$  by hydroquinone is fast (Fukushima and Tatsumi, 1998). Overall, the DPD-POD colorimetric method can accurately measure the  $\rm H_2O_2$  concentration regardless the interference of aliphatic organics due to the selectivity of peroxidase, but this colorimetric method also should be scrutinized in the presence of phenols and benzoquinones.

### 3.4. Recommendations for method selection

No clear rule was discerned between the concentration of different co-occurring organic compounds and the resulting relative errors (Fig. S5). Furthermore, the concentrations of sacrificial agents and/or contaminants change during  $H_2O_2$  quantification, which makes it is difficult to assign a specific relative error for each of the three methods under consideration. Therefore, we produced a flowchart to guide selection of the most suitable  $H_2O_2$  quantification method for different case-specific conditions (Fig. 5).

The first consideration should be which organic sacrificial agents and/or contaminants are present in the photocatalytic reaction. If no organic is present in the reaction system, the choice of  $\rm H_2O_2$  detection method depends on their detection ranges. The KMnO<sub>4</sub> titration method is applicable for a wide range of  $\rm H_2O_2$  concentrations. The NH<sub>4</sub>VO<sub>3</sub> colorimetric method is not appropriate for low concentrations of  $\rm H_2O_2$  below its detection limit

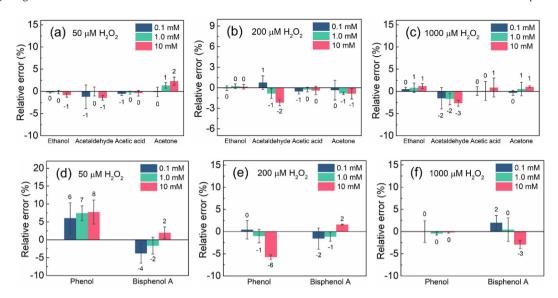



Fig. 4. The effect of aliphatic (a, b and c) and aromatic (d, e and f) organics on the quantification of H<sub>2</sub>O<sub>2</sub> in DPD-POD colorimetric method.

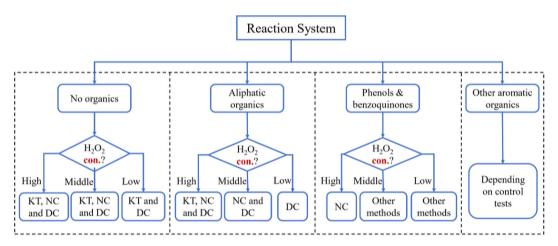



Fig. 5. Flowchart for selecting a suitable  $H_2O_2$  detection method (con. = concentration,  $KT = KMnO_4$  titration method,  $NC = NH_4VO_3$  colorimetric method, DC = DPD-POD colorimetric method).

(65.8  $\mu$ M). The DPD-POD colorimetric method can be directly used for samples with  $H_2O_2$  concentrations below 400  $\mu$ M based on the measured calibrate curve, and samples with higher  $H_2O_2$  concentrations than this value should be diluted before quantification.

When organics are present, interference by aliphatic compounds is generally less than that of aromatic organic compounds. The presence of aliphatic organic compounds (above 0.1 mM) will induce significant relative errors for the KMnO<sub>4</sub> titration method when  $\rm H_2O_2$  concentration is less than 200  $\rm \mu M$ , while the NH<sub>4</sub>VO<sub>3</sub> and DPD-POD colorimetric methods are less susceptible to this interference. Accordingly, quantification of 50  $\rm \mu M$   $\rm H_2O_2$  concentration with the DPD-POD colorimetric method in the presence of aliphatic compounds should be reliable. Both NH<sub>4</sub>VO<sub>3</sub> and DPD-POD colorimetric methods are suitable for the determination of medium-concentration (200–1000  $\rm \mu M)$   $\rm H_2O_2$  samples. As for samples with high  $\rm H_2O_2$  concentration (>1000  $\rm \mu M)$ , all the three methods can be employed.

Aromatic organic compounds may cause large relative errors to all the three ranges of  $H_2O_2$  concentrations measured by the KMnO<sub>4</sub> titration method even if the organic concentrations are only 0.1 mM. The accuracy of  $NH_4VO_3$  colorimetric method can be

seriously interfered by *p*-benzoquinone when its concentration is above 1.0 mM and  $H_2O_2$  concentrations is below 1000  $\mu$ M. The DPD-POD colorimetric method fails to quantify H<sub>2</sub>O<sub>2</sub> in the presence of p-benzoquinone due to its controversial imine-generation reaction with DPD. Therefore, among the three methods, NH<sub>4</sub>VO<sub>3</sub> colorimetric method is relatively reliable in the presence of benzoquinones with concentrations below 1.0 mM. When benzoquinones are present with high concentrations (above 1.0 mM), none of the three methods are recommended. Considering that p-benzoquinone and hydroquinone are possible oxidation intermediates of phenolic compounds (Yang et al., 2010; Liu et al., 2018), H<sub>2</sub>O<sub>2</sub> quantification when such organics are present should be scrutinized. Other H<sub>2</sub>O<sub>2</sub> detection methods, such as ion chromatography with UV detector, whose mechanism is not based on redox reactions should be considered (Song et al., 2017). Note that the degradation pathways of most aromatic compounds are to be oxidized to phenols, then open the ring and be mineralized (Wu et al., 2019; Feng et al., 2020b). Thus, in the presence of other aromatic compounds, it is important to carry out not only control experiments to assess interference by organics, but also consider interference by the oxidation intermediates. Other blank and

control tests, to correct for the influence of background color on absorbance measurement, should be conducted in advanced to enhance reliable  $H_2O_2$  quantification. It is also recommended to use more than one method for  $H_2O_2$  quantification when appropriate.

# 4. Conclusions

Aliphatic and aromatic compounds are often present as sacrificial agents and/or target contaminants in photocatalytic in-situ  $H_2O_2$  production and Fenton reactions. To determine the impact of these organics on  $H_2O_2$  quantification, three common  $H_2O_2$  methods were compared (titration with KMnO<sub>4</sub>, and colorimetry with NH<sub>4</sub>VO<sub>3</sub> or DPD-POD). Interferences by different organics were systematically compared through relative errors, and the interfering mechanisms were analyzed.

The accuracy of KMnO<sub>4</sub> titration method is greatly compromised by the presence of aromatic compounds at concentrations as low as 0.1 mM. The DPD-POD colorimetric method is unreliable when benzoquinones are present due to the direct reaction with DPD, while the NH<sub>4</sub>VO<sub>3</sub> colorimetric method is relatively accurate in the presence of benzoquinones with concentrations below 1.0 mM (i.e. 108 mg  $\rm L^{-1}$ ). Based on the presented data, a flowchart was developed to guide the selection of a H<sub>2</sub>O<sub>2</sub> detection method in different scenarios. We hope that this contribution will foster reliable quantification of H<sub>2</sub>O<sub>2</sub> in photocatalytic systems and Fenton-like reactions to enhance system-specific optimization efforts.

# Credit author contribution statement

**Yan Wei**: Conceptualization, Methodology, Investigation, Data curation, Writing — original draft preparation. **Jingzhen Zhang**: Methodology, Investigation, Validation. **Qian Zheng**: Resources, Investigation. **Jie Miao**: Resources, Investigation. **Pedro J J Alvarez**: Validation, Writing — review & editing. **Mingce Long**: Supervision, Validation, Conceptualization, Funding acquisition, Writing — review & editing.

# **Declaration of competing interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# Acknowledgments

Financial supports from the National Natural Science Foundation of China (nos. 52070128 and 21876108), the National Key Research and Development Program of China (no. 2017YFE0195800), the NSF ERC on Nanotechnology-Enabled Water Treatment (no. EEC-1449500), and Shanghai Post-doctoral Excellence Program (no. 2019160) are gratefully acknowledged.

# Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2021.130556.

### References

- Asghar, A., Raman, A.A.A., Daud, W.M.A.W., 2015. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J. Clean. Prod. 87, 826–838.
- Avigdori, I., Pogoreltsev, A., Kaushanski, A., Fridman, N., Gandelman, M., 2020. Frustrated lewis pairs comprising nitrogen lewis acids for Si-H bond activation. Angew. Chem. Int. Ed. 59, 23476–23479.
- Bader, H., Sturzenegger, V., Hoigné, J., 1988. Photometric method for the

determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res. 22, 1109–1115.

- Bontschev, P.R., 1962. Investigations on the mechanism of some analytical catalytic reactions. Microchim. Acta 50, 584–591.
- Campos-Martin, J.M., Blanco-Brieva, G., Fierro, J.L., 2006. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984.
- Chu, C., Zhu, Q., Pan, Z., Gupta, S., Huang, D., Du, Y., Weon, S., Wu, Y., Muhich, C., Stavitski, E., Domen, K., Kim, J.H., 2020. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H<sub>2</sub>O<sub>2</sub> production. Proc. Natl. Acad. Sci. U.S.A. 117, 6376–6382.
- Feng, C., Tang, L., Deng, Y., Wang, J., Luo, J., Liu, Y., Ouyang, X., Yang, H., Yu, J., Wang, J., 2020a. Synthesis of leaf-vein-like g-C<sub>3</sub>N<sub>4</sub> with tunable band structures and charge transfer properties for selective photocatalytic H<sub>2</sub>O<sub>2</sub> evolution. Adv. Funct. Mater. 30. 2001922.
- Feng, C., Tang, L., Deng, Y., Wang, J., Tang, W., Liu, Y., Chen, Z., Yu, J., Wang, J., Liang, Q., 2020b. Synthesis of branched WO<sub>3</sub>@W<sub>18</sub>O<sub>49</sub> homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance. Chem. Eng. J. 389, 124474.
- Fukushima, M., Tatsumi, K., 1998. Influence of interfering dissolved organic matter on the determination of hydrogen peroxide by a colorimetric method based on the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine. Talanta 47, 899–905.
- Fukuzumi, S., Lee, Y.M., Nam, W., 2018. Solar-driven production of hydrogen peroxide from water and dioxygen. Chem. Eur J. 24, 5016–5031.
- Gao, G., Tian, Y., Gong, X., Pan, Z., Yang, K., Zong, B., 2020. Advances in the production technology of hydrogen peroxide. Chin. J. Catal. 41, 1039–1047.
- Gao, Y., Zhong, S., Torralba-Sanchez, T.L., Tratnyek, P.G., Weber, E.J., Chen, Y., Zhang, H., 2021. Quantitative structure activity relationships (QSARs) and machine learning models for abiotic reduction of organic compounds by an aqueous Fe(II) complex. Water Res. 192, 116843.
- Gill, T.M., Zheng, X., 2020. Comparing methods for quantifying electrochemically accumulated H<sub>2</sub>O<sub>2</sub>. Chem. Mater. 32, 6285–6294.
- Hirakawa, H., Shiota, S., Shiraishi, Y., Sakamoto, H., Ichikawa, S., Hirai, T., 2016. Au nanoparticles supported on BiVO<sub>4</sub>: effective inorganic photocatalysts for H<sub>2</sub>O<sub>2</sub> production from water and O<sub>2</sub> under visible light. ACS Catal. 6, 4976–4982.
- Hou, H., Zeng, X., Zhang, X., 2019. Production of hydrogen peroxide through photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376.
- Huang, Y., Kong, M., Coffin, S., Cochran, K.H., Westerman, D.C., Schlenk, D., Richardson, S.D., Lei, L., Dionysiou, D.D., 2020. Degradation of contaminants of emerging concern by UV/H<sub>2</sub>O<sub>2</sub> for water reuse: kinetics, mechanisms, and cytotoxicity analysis. Water Res. 174, 115587.
- Huckaba, C.E., Keyes, F.G., 1948. The accuracy of estimation of hydrogen peroxide by potassium permanganate titration. J. Am. Chem. Soc. 70, 1640–1644.
- Karelson, M., Lobanov, V.S., Katritzky, A.R., 1996. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 96, 1027—1043.
- Klassen, N.V., Marchlngton, D., McGowan, H.C.E., 1994.  $\rm H_2O_2$  determination by the  $\rm I_3$  method and by KMnO<sub>4</sub> titration. Anal. Chem. 66, 2921–2925.
- Kofuji, Y., Isobe, Y., Shiraishi, Y., Sakamoto, H., Ichikawa, S., Tanaka, S., Hirai, T., 2018. Hydrogen peroxide production on a carbon nitride—boron nitride-reduced graphene oxide hybrid photocatalyst under visible light. ChemCatChem 10, 2070—2077.
- Liu, L., Liu, H., Zhao, Y., Wang, Y., Duan, Y., Gao, G., Ge, M., Chen, W., 2008. Directed synthesis of hierarchical nanostructured TiO<sub>2</sub> catalysts and their morphologydependent photocatalysis for phenol degradation. Environ. Sci. Technol. 42, 2342–2348.
- Liu, R., Xu, Y., Chen, B., 2018. Self-assembled nano-FeO(OH)/reduced graphene oxide aerogel as a reusable catalyst for photo-fenton degradation of phenolic organics. Environ. Sci. Technol. 52, 7043–7053.
- Lu, N., Liu, N., Hui, Y., Shang, K., Jiang, N., Li, J., Wu, Y., 2020. Characterization of highly effective plasma-treated g-C<sub>3</sub>N<sub>4</sub> and application to the photocatalytic H<sub>2</sub>O<sub>2</sub> production. Chemosphere 241, 124927.
- Luo, W., Zhu, L., Wang, N., Tang, H., Cao, M., She, Y., 2010. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO<sub>3</sub> as a reusable heterogeneous Fenton-like catalyst. Environ. Sci. Technol. 44, 1786–1791.
- Maleki, A., Nematollahi, D., 2011. Electrochemical synthesis and mechanestic study of quinone imines exploiting the dual character of N,N-dialkyl-p-phenyl-enediamines. Org. Lett. 13, 1928–1931.
- Mendez-Arriaga, F., Esplugas, S., Gimenez, J., 2010. Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water Res. 44, 589–595.
- Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hubner, U., 2018. Evaluation of advanced oxidation processes for water and wastewater treatment a critical review. Water Res. 139, 118–131.
- Molamahmood, H.V., Qin, J., Zhu, Y., Deng, M., Long, M., 2020. The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil. Chemosphere 249, 126146.

  Nogueira, R.F.P., Oliveira, M.C., Paterlini, W.C., 2005. Simple and fast spectropho-
- Nogueira, R.F.P., Oliveira, M.C., Paterlini, W.C., 2005. Simple and fast spectrophotometric determination of H<sub>2</sub>O<sub>2</sub> in photo-Fenton reactions using metavanadate. Talanta 66, 86–91.
- Nosaka, Y., Nosaka, A.Y., 2017. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302—11336.
- Pan, Y., Su, H., Zhu, Y., Molamahmood, H.V., Long, M., 2018. CaO<sub>2</sub> based Fenton-like reaction at neutral pH: accelerated reduction of ferric species and production of superoxide radicals. Water Res. 145, 731–740.

Perry, S.C., Pangotra, D., Vieira, L., Csepei, L.-I., Sieber, V., Wang, L., Ponce de León, C., Walsh, F.C., 2019. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458.

- Pi, L., Cai, J., Xiong, L., Cui, J., Hua, H., Tang, D., Mao, X., 2020. Generation of H<sub>2</sub>O<sub>2</sub> by on-site activation of molecular dioxygen for environmental remediation applications: a review. Chem. Eng. J. 389, 123420.
- Shao, P., Yu, S., Duan, X., Yang, L., Shi, H., Ding, L., Tian, J., Yang, L., Luo, X., Wang, S., 2020. Potential difference driving electron transfer via defective carbon nanotubes toward selective oxidation of organic micropollutants. Environ. Sci. Technol. 54, 8464–8472.
- Shi, L., Yang, L., Zhou, W., Liu, Y., Yin, L., Hai, X., Song, H., Ye, J., 2018. Photoassisted construction of holey defective g-C<sub>3</sub>N<sub>4</sub> photocatalysts for efficient visible-light-driven H<sub>2</sub>O<sub>2</sub> production. Small 14, 1703142.
- Shiraishi, Y., Kanazawa, S., Kofuji, Y., Sakamoto, H., Ichikawa, S., Tanaka, S., Hirai, T., 2014. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed. 53, 13454–13459.
- Song, M., Wang, J., Chen, B., Wang, L., 2017. A facile, nonreactive hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) detection method enabled by ion chromatography with UV detector. Anal. Chem. 89, 11537—11544.
- Speight, J.G., 2005. Lange's Handbook of Chemistry. McGRAW-HILL.
- Su, H., Wei, Y., Qu, X., Yu, C., Li, Q., Alvarez, P.J.J., Long, M., 2020. Mechanistic inference on the reaction kinetics of phenols and anilines in carbon nanotubesactivated peroxydisulfate systems: pp-LFERs and QSARs analyses. Chem. Eng. J. 385, 123923.
- Sun, Y., Han, L., Strasser, P., 2020. A comparative perspective of electrochemical and photochemical approaches for catalytic H<sub>2</sub>O<sub>2</sub> production. Chem. Soc. Rev. 49, 6605–6631.
- Trovo, A.G., Nogueira, R.F.P., Aguera, A., Fernandez-Alba, A.R., Sirtori, C., Malato, S., 2009. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res. 43, 3922–3931.
- Tsukamoto, D., Shiro, A., Shiraishi, Y., Sugano, Y., Ichikawa, S., Tanaka, S., Hirai, T., 2012. Photocatalytic H<sub>2</sub>O<sub>2</sub> production from ethanol/O<sub>2</sub> system using TiO<sub>2</sub> loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal. 2, 599–603.
- Wang, L., Cao, S., Guo, K., Wu, Z., Ma, Z., Piao, L., 2019. Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chin. J. Catal. 40, 470–475.

Wei, Y., Zhang, Y., Geng, W., Su, H., Long, M., 2019. Efficient bifunctional piezocatalysis of Au/BiVO<sub>4</sub> for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl. Catal. B: Environ. 259, 118084.

- Wu, H., Xu, X., Shi, L., Yin, Y., Zhang, L.C., Wu, Z., Duan, X., Wang, S., Sun, H., 2019.
  Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals. Water Res. 167, 115110.
- Xiong, Z., Wang, Z., Muthu, M., Zhang, Y., 2019. Construction of an in-situ Fentonlike system based on a g-C<sub>3</sub>N<sub>4</sub> composite photocatalyst. J. Hazard Mater. 373, 565–571
- Yang, L., Luo, S., Li, Y., Xiao, Y., Kang, Q., Cai, Q., 2010. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu<sub>2</sub>O/TiO<sub>2</sub> p-n heterojunction network catalyst, Environ. Sci. Technol. 44, 7641–7646.
- Zhang, J., Yu, C., Lang, J., Zhou, Y., Zhou, B., Hu, Y.H., Long, M., 2020a. Modulation of Lewis acidic-basic sites for efficient photocatalytic H<sub>2</sub>O<sub>2</sub> production over potassium intercalated tri-s-triazine materials. Appl. Catal. B: Environ. 277, 119225.
- Zhang, J., Zheng, L., Wang, F., Chen, C., Wu, H., Leghari, S.A.K., Long, M., 2020b. The critical role of furfural alcohol in photocatalytic H<sub>2</sub>O<sub>2</sub> production on TiO<sub>2</sub>. Appl. Catal R: Environ 269, 118770
- Zhang, P., Tong, Y., Liu, Y., Vequizo, J.J.M., Sun, H., Yang, C., Yamakata, A., Fan, F., Lin, W., Wang, X., Choi, W., 2020c. Heteroatom dopants promote two-electron O<sub>2</sub> reduction for photocatalytic production of H<sub>2</sub>O<sub>2</sub> on polymeric carbon nitride. Angew. Chem. Int. Ed. 59, 16209—16217.
- Zhao, J., Yang, J., Ma, J., 2014. Mn(II)-enhanced oxidation of benzoic acid by Fe(III)/ H<sub>2</sub>O<sub>2</sub> system. Chem. Eng. J. 239, 171–177. Zheng, L., Su, H., Zhang, J., Walekar, L.S., Molamahmood, H.V., Zhou, B., Long, M.,
- Zheng, L., Su, H., Zhang, J., Walekar, L.S., Molamahmood, H.V., Zhou, B., Long, M., Hu, Y.H., 2018. Highly selective photocatalytic production of H<sub>2</sub>O<sub>2</sub> on sulfur and nitrogen co-doped graphene quantum dots tuned TiO<sub>2</sub>. Appl. Catal. B: Environ. 239, 475–484.
- Zhou, Q., Zhang, Z., Cai, J., Liu, B., Zhang, Y., Gong, X., Sui, X., Yu, A., Zhao, L., Wang, Z., Chen, Z., 2020. Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy 71, 104592.
- Zhu, Y., Qin, J., Zhang, S., Radian, A., Long, M., 2020. Solid peroxides in Fenton-like reactions at near neutral pHs: superior performance of MgO<sub>2</sub> on the accelerated reduction of ferric species. Chemosphere 128639.