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a b s t r a c t

This study analyzed fresh feces from three common bird species that live in urban environments and
interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major
classes of antibiotics (i.e., tetracyclines, b-lactams, and sulfonamides) and the mobile genetic element
integrase gene (intI1) were abundant (up to 109, 108, 109, and 1010 copies/g dry feces for tetW, blaTEM, sul1,
and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and
livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abun-
dant (up to 107 copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas
aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation
with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected
in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG
relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG
maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and
dissemination of ARGs, and the associated health risks.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The global spread of antibiotic resistance poses a growing threat
to public health (O’Neill, 2014) and requires improved under-
standing of ARG sources and vectors to mitigate the associated risks
(Vikesland et al., 2017; Wu et al., 2018). The resistome carried by
wildlife could be an important but underappreciated factor in ARG
dissemination (Allen et al., 2010), and urbanization could amplify
such risks as it fosters many overlapping habitats and frequent
interactions between wildlife populations and humans (Magle
et al., 2012).

Urban wild birds tend to have a relatively high population
density (1.13e1.18 birds/resident) (Fuller et al., 2009) and oppor-
tunities to interact with human communities (Luniak, 2004; Magle
et al., 2012) since urban settings generally have abundant food
sources, low predator pressure, and a milder microclimate. Urban
birds also have a high probability of exposure to water sources
e by Klaus Kümmerer.
contaminated with antibiotics (Xu et al., 2016; Zhang et al., 2018),
which may impact the abundance and diversity of ARGs within
their gut and fecal microbiomes. Additionally, urbanwild birdsmay
serve as vectors for antibiotic resistant bacteria (ARB) derived from
anthropogenic sources, as demonstrated by studies revealing clin-
ically important ARB in bird feces (Ahlstrom et al., 2018; Hernandez
et al., 2013). These bird-carried ARB and ARGs can be transferred to
urban residents through swimming in feces-polluted waters,
dermal contact with bird feces (or impacted soil) during outdoor
recreational activities (Tsiodras et al., 2008), or inhalation of aero-
solized fecal particles (Feddes et al., 1992). Therefore, it is important
to investigate the abundance, diversity, and bacterial hosts of ARGs
harbored by common urban wild birds.

Previous studies have conducted culture-based identification of
ARB in bird feces (Dolejska and Literak, 2019; Wang et al., 2017) or
analyzed ARGs harbored by wild birds near ARG hotspots (e.g.,
wastewater treatment plants (Marcelino et al., 2019) and ARG-
polluted rivers (Wu et al., 2018)). However, there is a need to
assess the relative abundance, diversity, and seasonal persistence of
ARGs and their co-occurrence with virulence genes after transport
and deposition by wild birds in densely populated environments to
inform the associated risks.
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In this study, fecal samples deposited by common urban wild
birds (i.e., ducks, crows, and gulls) were collected from highly fre-
quented sites in Houston metropolitan areas. ARGs and the mobile
genetic element (MGE) integrase gene (intI1) were measured and
compared with those found in poultry and livestock. These ARGs
are commonly reported in the environment and were thus selected
to facilitate comparisonwith other studies. Opportunistic pathogen
levels were quantified by specific biomarker abundance, and their
antibiotic resistance and potential virulence were evaluated by
plate assays followed by PCR analyses. The natural attenuation of
ARGs in impacted soil was then monitored to assess their persis-
tence over different seasons. Possible selective pressure by residual
antibiotics and their co-occurrence and correlation to ARG abun-
dance were also considered.

2. Materials and methods

2.1. Wild bird selection and fecal sample collection

Three common Houstonwild bird species (i.e., ducks, crows, and
gulls) with diverse foraging and migratory habits were selected
(Table 1) (Lockwood and Freeman, 2014; Oberholser et al., 1974)
due to their abundance and frequent interactions with humans. We
observed when these birds defecated, and fresh fecal samples from
a given species were separately collected and homogenized as
follows. Freshly deposited feces of each bird species were collected
in 20-mL sterilized scintillation vials from two outdoor sites (i.e.,
nearby parks and beaches) in both summer and winter seasons
(Table 1, Fig. S1). Specifically, six evenly distributed sampling lo-
cations were designated in each site, and two sites were chosen for
each bird species to corroborate results. Thus, following common
sample collection strategies (Guo et al., 2018; Hurst et al., 2019;
Thames et al., 2012), fresh feces from a given bird species and
specific site were pooled and homogenized for overall character-
ization. Each site was sampled three times per season, making 36
fecal pools in total. Each homogenized fecal pool (about 60e100 g
fresh weight) was divided into four aliquots under aseptic condi-
tions. One aliquot was used for culture-based microbial analysis,
one for genetic biomarker analysis, one for ARG natural attenuation
test, and one for chemical analysis. Detailed sampling information
including bird species, sampling sites, and amount of sampled feces
are provided in Table S1.

2.2. Quantification of selected ARGs and intI1

One aliquot of fecal samples was dried by lyophilization (Mill-
rock Technology, USA), which is a common strategy in dehydration
of soil and manure samples for ARG analysis (He et al., 2014; Luo
et al., 2010). Microbial DNA was extracted from the dried samples
using the FastDNA Spin Kit for soil (MP Biomedicals, Solon, OH)
Table 1
Wild bird selection and fecal sample collection.

Bird
name

Binomial name Feeding

Duck Cairina moschata Omnivores (grasses, tubers, insect, worms, small fish et

Crow Corvus
brachyrhynchos

Omnivores (seeds, grains, nuts, fruit, insects, worms et a

Gull Larus atricilla Opportunistic omnivore (earthworms, insects, snails, cra
squid et al.)

a Nonmigratory indicates that all the birds are residents, partially migratory indicates
Houston (Banks et al., 2004; Lockwood and Freeman, 2014; Oberholser et al., 1974).
following themanufacturer’s instructions. Phage lDNAwas used as
an internal standard to calculate DNA recovery efficiency which
was in the range of 89%e95%. Quantitative PCR (qPCR) was per-
formed on CFX96TM Real-Time System to quantify selected ARGs
(i.e., sul1, sul2, tetW, ampC, and blaTEM), 16S rRNA, and an MGE in-
dicator (intI1) (Table S2). The 16S rRNA gene was included to
quantify the total bacterial amount and to normalize the abundance
of ARGs in different samples. These details are available in the
Supporting Information (SI).

2.3. Chemical analyses of antibiotics

To explore the potential selective pressure for ARGs, the con-
centrations of nine antibiotics were analyzed in lyophilized fecal
samples (He et al., 2014; Hurst et al., 2019), including four tetra-
cyclines (tetracycline (TET), chlortetracycline (CTC), doxycycline
(DOXY), and oxytetracycline (OTC)), one b-lactam (ampicillin
(AMP)), and four sulfonamides (sulfadiazine (SD), sulfadimethoxine
(SDM), sulfamethoxazole (SMX), and sulfachloropyridazine (SCP)).
The concentrations of these antibiotics were determined by high-
performance liquid chromatography-tandem mass spectrometry
(HPLC-MS/MS) following a previously reported protocol (Luo et al.,
2011). Briefly, lyophilized fecal samples were first extracted with
extraction buffer (15 mL methanol, 5 mL 0.1 M Na2-EDTA, and
10 mL citrate buffer with pH of 5). The supernatant samples were
then pretreated with Strata strong anion exchanger cartridges
(Thermo scientific, USA) followed by extraction with Oasis
hydrophilic-liphophilic balance (HLB) cartridges (Waters, Watford,
UK). The analyte separations were carried out on the Intersil ODS-3
column (GL Sciences, Japan) for HPLC-MS/MS analysis with the
gradient program described in the same protocol (Luo et al., 2011).
Antibiotic recovery rates were 71e90% and the limit of quantifica-
tion (LOQ) was 1.8e2.0 ng/g.

2.4. Tracking the natural attenuation and dissemination of fecal
ARGs

To track the natural attenuation of ARGs, one aliquot of fresh
feces from each homogenized fecal pool was placed in the initial
sampling sites and protected by artificial fences to avoid external
physical disruption. Aliquots (0.5 g) of feces were collected after
one, three, five, and seven days, respectively. The samples were
subjected to ARG quantification via qPCR, and total viable cultivable
bacteria extracted by Nycodenz gradient centrifugation (Maron
et al., 2006) were quantified via plate assays. The attenuation
trends were fitted with first-order kinetics (Burch et al., 2014) and
the attenuation coefficients (k, day�1) for both ARGs and bacteria
were determined using: k ¼ (ln (C0) � ln (Ct))/t, where C0 and Ct
represent abundance (copies of ARG/g dry weight, CFU/g dry
weight) initially and after t days, respectively.
Migrations a Sampling areas Sampling time

al.) Nonmigratory Hermann Park
George Bush
Park

Aug.eSept., 2018 (Temperature 98/
70 �F)>
Jan.eFeb. 2019 (Temperature 79/
32 �F)l.) Partially

migratory
Oyster Creek
Lake
Chinatown

bs, fish, Partially
migratory

Surfside Beach
Porretto Beach

that a fraction of the birds are residents while others fly from the north in winter to
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To investigate the dissemination of fecal ARGs in the receiving
environments, topsoil (up to 1 inch depth) was collected in the
North, South, East, and West directions in four concentric circles at
a distance of 0, 1, 2, and 4 ft away from four targeted duck feces
(freshly voided) in Hermann Park, Houston, in both summer and
winter seasons. Both summer and winter samples were collected in
the same region of the park, and no other feces were observed
within this area. Grass, branches, and stones were carefully avoided
during sampling. Soil samples were sieved through a 2 mm mesh
standard test sieve (Fisher Scientific, USA), dried by lyophilization
(Millrock Technology, USA), and subjected to DNA extraction and
qPCR analyses following the aforementioned protocol.
2.5. Quantification antibiotic resistance indicators and potential
opportunistic pathogens

Escherichia coli (E. coli) and Enterococcus spp. are widely
considered as antibiotic resistance indicators since they can easily
acquire and transfer ARGs (Berendonk et al., 2015; Radhouani et al.,
2012). Species- and genus-specific functional genes (Yu et al., 2018)
were chosen as biomarkers to verify and quantify E. coli and
Enterococcus spp. in bird feces by qPCR (Table S3). Potential
opportunistic pathogens, including Pseudomonas aeruginosa, Aero-
monas hydrophila, Clostridium perfringens, Vibrio vulnificus, and
Salmonella enterica, were also quantified by species-specific func-
tional genes (Table S3) since they were previously identified in bird
cloacal or fecal samples (Fern�andez-Delgado et al., 2016;
Merkeviciene et al., 2017; Shane and Gifford, 1985). Enterococcus
spp. were also considered as potential opportunistic pathogens in
our study since major species in this genus are known to carry
virulence genes (Han et al., 2011; Poeta et al., 2005; Sidhu et al.,
2014; Song et al., 2019).
2.6. Characterization of antibiotic resistance indicators and
opportunistic pathogens

Selective media was used to isolate E. coli, Enterococcus spp., and
P. aeruginosa for further characterization due to their high abun-
dance of biomarkers in our primary tests. Fecal bacteria extracted
by Nycodenz gradient centrifugation (Maron et al., 2006) were
inoculated on specific isolation agar medium, including Eosin
methylene blue (EMB) agar (Hardy Diagnostics, USA) (Leininger
et al., 2001), Pfizer Selective Enterococcus Agar (HIMEDIA, USA)
(Liu, 2015), and Pseudomonas Isolation Agar (BD Biosciences, USA)
(Grobe et al., 1995), for the isolation and cultivation of the three
targeted bacterial species (or genus), respectively.

After incubation at 37 �C overnight, well-separated colonies
were subjected to colony PCR followed by 16S rRNA gene
sequencing to ensure their taxonomy. Potential antibiotic resis-
tance was verified by determining the presence of the five targeted
ARGs via PCR analyses and investigating the viability of ARG-
positive colony isolates on agar spiked with corresponding antibi-
otics (Ampicillin 100 mg/L, Tetracycline 10 mg/L, and Sulfanilamide
10 mg/L). The Enterococcus spp. and P. aeruginosa isolates were
subjected tomultiplex PCR to assess whether they carried virulence
genes. Targeted virulence genes for Enterococcus spp. were gelE
(encoding gelatinase), asa1 (encoding pheromone-inducible pro-
tein), cad1 (encoding pheromone cAD1 precursor lipoprotein), fsr
(encoding regulator of gelE expression), and efm (encoding cell wall
adhesin) (Han et al., 2011; Poeta et al., 2005; Sidhu et al., 2014; Song
et al., 2019). Targeted virulence genes for P. aeruginosa were lasB
(encoding elastase), toxA (encoding exotoxin A), plcH (encoding
elastase), exoS (encoding exotoxin S), and algD (encoding alginate)
(Fazeli et al., 2014). Details of PCR andmultiplex PCR are included in
the SI. The proportion of ARG positive, virulence gene positive, and
both ARG and virulence gene positive isolates were calculated for
both P. aeruginosa and Enterococcus spp.

2.7. Statistical analysis

ANOVA analysis was performed to compare the differences be-
tween various fecal samples in ARG abundance and degradation
rate. Pearson correlation analysis was also conducted to further
characterize the relationship between antibiotic concentrations
and ARG relative abundance, using SPSS 26.0 software. Differences
were considered to be significant at the 95% confidence level
(p < 0.05).

3. Results and discussion

3.1. High levels of ARGs and intI1 were present in urban wild bird
feces

ARGs encoding resistance to tetracycline, b-lactam, and sulfon-
amide antibiotics were detected in all bird fecal pools (n ¼ 36) of
the three bird species in both summer and winter. Their absolute
abundance was (in copies/g dry feces) up to 109 for tetW, 1010 for
ampC, 108 for blaTEM, 109 for sul1, and 109 for sul2 (Fig. S2). The
corresponding relative abundance varied from 10�3 to 10�2 copies/
16S rRNA for ducks, 10�5 to 10�2 for crows, and 10�5 to 10�1 for
gulls. Notably, the relative abundance of ARGs, especially in the
feces from ducks and gulls, were comparable to those found in the
fresh feces of poultry (e.g., chicken (Cheng et al., 2013; Le Devendec
et al., 2016; Lin et al., 2017; Mu et al., 2015)) occasionally fed with
antibiotics (Fig. 1). Considering their high population (1.13e1.18
birds/resident) (Fuller et al., 2009) and mobility, this finding
highlights the role of wild birds as urban ARGs reservoir and po-
tential vectors.

The MGE indicator intI1 was also detected in all fecal pools with
relative abundance ranging from 10�3 to 10�1 copies/16S rRNA for
all three wild bird species. IntI1 levels in the feces of gulls were over
five times more abundant than reported for farm animals (Fig. 1),
indicating the potential for horizontal transfer of ARGs in bird gut
and receiving environments. Note that intI1 concentrations were
positively correlated with sul1 (Pearson correlation coefficient
r ¼ 0.80, p < 0.05) and total of b-lactam resistance gene concen-
trations (ampC plus blaTEM, r ¼ 0.92, p < 0.05), which corroborates
previous suggestions of their close genetic link in environmental
settings (Ma et al., 2017). High correlation (r ¼ 0.95, p < 0.05) be-
tween intI1 and total ARG abundance suggests that intI1 could be an
important indicator of ARGs in urban bird feces.

Variations in fecal ARG profile were observed among bird spe-
cies, probably due to differences in their ecological niches, foraging
preference (Lockwood and Freeman, 2014; Oberholser et al., 1974),
and gut microbiome (Grond et al., 2018; Marcelino et al., 2019).
Interestingly, crow feces harbored a significantly lower level of
ARGs in the summer compared to ducks and gulls. In addition, crow
feces were the only ones presenting a significant seasonal differ-
ence in ARG abundance (p< 0.05), possibly due to seasonal variance
of suitable food resources (Dolejska and Literak, 2019; Luniak,
2004). Crows may forage more in highly populated areas and
waste disposal sites during the winter due to scarcity of their nat-
ural substrates (e.g., seeds, grains, fruit, insects, and worms)
(Luniak, 2004; Preininger et al., 2019), and therefore probably
ingest more frequently food contaminated with ARB (Heringa et al.,
2010) and resistance-inducing substances (Lu et al., 2018). Overall,
these results suggest that urban wild birds may facilitate ARG
dissemination in urban environments through their feces. Given
the short-term (one-year) sampling period and that other seasonal



Fig. 1. Similar relative abundance of ARGs in the feces of urban wild birds with that reported for the fresh feces of farmed poultry that are occasionally fed antibiotics. ARGs
abundance (copies of ARGs/copies of 16S rRNA gene) was the mean of six fecal pools from two sampling sites, with error bars representing ± one standard deviation. The abundance
of ARG and intI1 reported for poultry was calculated by averaging the mean values from multiple studies for each gene. The standard deviation was calculated based on the mean
values reported in each study.
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factors (e.g., bird populations) might affect sample variability,
further long-term investigation may be required to corroborate the
seasonal ARG profile differences in the targeted bird feces.
3.2. Presence of residual antibiotics in bird feces may partially
contribute but does not fully explain high abundance of ARGs

To explore whether the selective pressure exerted by residual
antibiotics could account for the high level of ARGs observed in bird
feces, the concentrations of their corresponding antibiotics were
measured. Average concentrations of tetracyclines, b-lactams, and
sulfonamides in fecal pools were 35.18, 4.33, and 8.85 ng/g dry
feces, respectively (Table S5), which were generally 1e3 orders of
magnitude higher than those in urban rivers, lakes, and seawater
(Arpin-Pont et al., 2016; Batt et al., 2016). The detected antibiotics
concentration are below their minimum inhibitory concentrations
(MIC) (about 0.01%e0.1% of standard MIC values (CLSI, 2019;
EUCAST, 2019)), which generally contributes selective pressure to
Fig. 2. Insignificant correlation between the antibiotic concentrations and the total relativ
between b-lactams and the sum of blaTEM and ampC, green squares for sulfonamides and the
summer feces from three bird species, while hollow ones for winter feces. J is the Jaccard sim
(not significant). Each symbol is the average level of antibiotic and ARG in six fecal pools. (Fo
the Web version of this article.)
sustain high levels of ARGs in bird gut microbiomes and excreted
feces (Gullberg et al., 2011; Liu et al., 2011; Lundstr€om et al., 2016;
Wistrand-Yuen et al., 2018). However, Pearson analysis revealed no
significant correlation between the concentrations of tetracycline
or b-lactam antibiotics and the total relative abundance of their
corresponding ARGs (r ¼ �0.49, p ¼ �0.162 for tetracyclines;
r ¼ �0.16, p ¼ �0.488 for b-lactams). A stronger correlation was
observed between sulfonamides and their resistance genes
(r¼ 0.70), but this was not statistically significant either (p¼ 0.704)
(Fig. 2, Table S6). These results suggest that residual antibiotics may
have contributed but were not fully responsible for the high
abundances of ARGs in bird feces, and underscores the need to
discern the importance of other potential etiological factors such as
host diet, age, idiosyncratic microbiome structure, and other
stressors.

Urban wild birds can be exposed to antibiotics in their food and
water from anthropogenic sources (Batt et al., 2016; Boonsaner and
Hawker, 2013), which may also contain ARG co-selecting elements
e abundance of corresponding ARGs. The dashed red circle highlights the relationship
sum of sul1and sul2, and blue dots for tetracyclines and tetW. Solid symbols represent
ilarity index (which was significant in all cases), and r is Pearson correlation coefficient
r interpretation of the references to colour in this figure legend, the reader is referred to
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such as heavy metals (Baker-Austin et al., 2006; Li et al., 2018),
disinfectants (e.g., dibromoacetic acid) (Lv et al., 2014), and anti-
microbial chemicals (e.g., triclosan) (Lu et al., 2018) that are capable
of inducing and promoting antibiotic resistance. Additionally, other
bird substrates such as surface water (Xu et al., 2016), grass (Yan
et al., 2019), insects (Zurek and Ghosh, 2014), and fish
(Abgottspon et al., 2014) could also be contaminated or colonized
by ARB and therefore influence bird gut resistome. Moreover,
common toxin-antitoxin systems are known to enhance plasmid
maintenance, along with co-located ARGs and other genes,
providing a potential mechanism by which ARGs may be main-
tained in the absence of selective pressure by residual antibiotics
(Yang and Walsh, 2017).

3.3. Moderate persistence and dissemination of fecal ARGs in
natural environments

Natural attenuation (e.g., hydrolysis and photolysis (Strickler
et al., 2015)) of three representative ARGs (i.e., tetW, blaTEM, and
sul1) and intI1 in bird feces followed first-order kinetics (R2 > 0.75)
with attenuation coefficients (k) between 0.058 and 0.535 day�1

(Table 2). The corresponding half-lives ranged from 1.3 to 11.1 days
(Table 2), which are generally higher than those of decaying fecal
bacteria (1.2e1.3 days in the summer, 1.4e2.2 days in the winter
(Table S7)). Thus, ARGs and intI1 released in these bird feces
exhibited moderate persistence in the impacted environments.
ANOVA revealed that half-lives were not significantly different
among gene types (p > 0.05), but were affected by seasons and bird
species. The persistence of fecal ARGs and intI1 showed significant
seasonal variance for ducks (stronger in winter) and gulls (stronger
in summer) (p < 0.05), but no significant difference for crows.

Given their moderate persistence, bird fecal ARGs and intI1may
increase the local resistome in the receiving urban environments.
The abundance of the representative ARGs and intI1 in topsoil
decreased with increasing distance from targeted duck feces
(within a 4-ft radius) (Fig. 3), indicating an enlarged region of in-
fluence beyond the bird feces. ARGs and intI1 abundance in topsoil
was generally higher in the summer, probably due to higher tem-
perature and the consequential elevated metabolic activities
including horizontal gene transfer (Dijkstra et al., 2011).

3.4. Characterization of AR indicators and potential opportunistic
pathogenic bacteria

E. coli and Enterococcus spp., which are commonly used as
general indicators of antibiotic resistance in surveillance efforts
Table 2
First-order attenuation of representative ARGs and intI1 in the bird feces. a

Bird species Genes Attenuation coefficient (k)

summer winter

Duck tetW 0.19 ± 0.04 0.24 ± 0.05
blaTEM 0.37 ± 0.07 0.14 ± 0.02
sul1 0.38 ± 0.02 0.13 ± 0.01
intI1 0.54 ± 0.03 0.17 ± 0.01

Crow tetW 0.17 ± 0.02 0.20 ± 0.01
blaTEM 0.29 ± 0.02 0.06 ± 0.02
sul1 0.16 ± 0.02 0.19 ± 0.01
intI1 0.35 ± 0.06 0.28 ± 0.09

Gull tetW 0.12 ± 0.01 0.18 ± 0.01
blaTEM 0.07 ± 0.02 0.19 ± 0.01
sul1 0.11 ± 0.03 0.17 ± 0.02
intI1 0.40 ± 0.01 0.49 ± 0.01

a Values (mean ± SD) are calculated from six fecal pools.
b Half-life values were calculated as t1/2 ¼ ln (2)/k.
(Berendonk et al., 2015; Radhouani et al., 2012), were abundant in
wild bird feces with concentrations ranging from 105 to 107 copies/
g dry feces (Table 3). PCR analyses showed that 24.2% E. coli and
22.9% Enterococcus spp. isolates carried at least one of the targeted
ARGs (Table 4). The MGE intI1 was observed in all E. coli and
Enterococcus spp. isolates (Table S8), suggesting its importance for
horizontal ARG transfer.

Despite presumed differences in foraging ranges and living
habits (Lockwood and Freeman, 2014; Oberholser et al., 1974), feces
from the three common bird species shared similar opportunistic
pathogen profiles with Enterococcus spp. and P. aeruginosa being
dominant species (or genus) at up to 107 copies/g dry feces
(Table 3). These findings are noteworthy as Enterococcus spp. is
primarily involved in urinary tract infections, sepsis and endo-
carditis (Osman et al., 2016), and P. aeruginosa is a major cause of
respiratory infections and notorious for biofilm formation (Limoli
and Hoffman, 2019). Although C. perfringens was not a dominant
pathogen, it was detected in all the winter fecal pools. This species
is a spore-forming opportunistic pathogen associated with food
poisoning (Augustin, 2011). Relative to the summer feces, winter
feces generally harbored more diverse and abundant opportunistic
pathogens, possibly due to lower sunlight inactivation (Goyal et al.,
1977; Sinton et al., 2007). Also, seasonal differences in moisture
levels, temperature and other factors are likely to affect bacterial
abundance and diversity (Bharathi et al., 2019).

ARGs and virulence genes were characterized for Enterococcus
spp. and P. aeruginosa isolated from bird feces. All ARG positive
isolates exhibited viability on agar medium spiked with antibiotics.
The co-existence of ARGs and virulence genes was observed for
almost all fecal samples (Table 4). Notably, such co-existence was
highest in the summer gull feces with 52.5% of isolated Entero-
coccus spp. and 45.0% of P. aeruginosa containing both ARGs and
virulence genes. This corroborates previous reports that bird feces
can carry antibiotic resistant pathogens (Ahlstrom et al., 2019;
Merkeviciene et al., 2017; Ngaiganam et al., 2019; Yahia et al., 2018).
The acquisition of ARGs bymajor opportunistic pathogens harbored
by bird feces underscores the need to mitigate potential exposure
pathways.
4. Conclusions

This study provides a profile of ARGs carried by wild birds in
urban areas, and vital information to guide further characterization
and mitigation of the associated health risks. Wild birds are
important carriers of ARGs (some of which are harbored by
opportunistic pathogens), as indicated by the high relative
Half-life (t1/2) b R2

summer winter summer winter

3.75 ± 0.90 2.94 ± 0.71 0.77 ± 0.04 0.91 ± 0.07
1.87 ± 0.39 4.95 ± 0.73 0.81 ± 0.03 0.90 ± 0.01
1.83 ± 0.11 5.32 ± 0.24 0.73 ± 0.01 0.97 ± 0.02
1.30 ± 0.08 4.21 ± 0.14 0.92 ± 0.04 0.95 ± 0.02
4.06 ± 0.42 3.52 ± 0.13 0.90 ± 0.03 0.86 ± 0.01
2.41 ± 0.21 11.14 ± 3.18 0.92 ± 0.02 0.98 ± 0.13
4.36 ± 0.69 3.74 ± 0.15 0.98 ± 0.01 0.98 ± 0.01
2.00 ± 0.38 2.51 ± 1.32 0.97 ± 0.01 0.93 ± 0.16
5.58 ± 0.14 3.97 ± 0.01 0.85 ± 0.04 0.93 ± 0.01
10.27 ± 3.30 3.74 ± 0.18 0.87 ± 0.36 0.75 ± 0.06
6.10 ± 1.61 4.21 ± 0.50 0.91 ± 0.12 0.93 ± 0.04
1.75 ± 0.05 1.42 ± 0.03 0.91 ± 0.03 0.93 ± 0.01



Table 3
Abundance (log copy number/g dry weight) of opportunistic pathogens in wild bird feces sampled in different seasons. a

Opportunistic pathogens Duck Crow Gull

Summer winter summer winter summer winter

Escherichia coli b 5.70 ± 0.25 6.80 ± 0.12 c 4.83 ± 0.22 7.52 ± 0.11 c 5.80 ± 0.08 7.99 ± 0.08 c

Enterococcus spp. 7.13 ± 0.20 7.19 ± 0.13 6.63 ± 0.09 7.12 ± 0.14 c 7.70 ± 0.16 7.69 ± 0.10
Pseudomonas aeruginosa 4.87 ± 0.17 7.63 ± 0.08 c 4.35 ± 0.08 6.15 ± 0.07 c 4.40 ± 0.12 5.65 ± 0.06 c

Clostridium perfringens 0.00 3.45 ± 0.10 c 2.54 ± 0.24 4.08 ± 0.13 c 2.47 ± 0.33 3.50 ± 0.19 c

Salmonella enterica 0.00 3.12 ± 0.13 c 0.00 5.04 ± 0.13 c 0.00 1.92 ± 0.03 c

Vibrio vulnificus 2.00 ± 0.19 2.58 ± 0.24 2.52 ± 0.12 2.54 ± 0.16 2.16 ± 0.46 2.48 ± 0.19
Aeromonas hydrophila 2.61 ± 0.26 3.28 ± 0.15 c 2.48 ± 0.65 1.95 ± 0.11 2.70 ± 0.41 2.01 ± 0.16

a Abundance was determined by qPCR targeting species-specific pathogen indicator genes with limits of quantification as 50 gene copies/g. Values (mean ± SD) are
calculated from six fecal pools.

b Escherichia coli is included as a common indicator of antibiotic resistance status in environmental systems (Berendonk et al., 2015).
c Indicates significantly higher abundance in winter.

Fig. 3. Absolute abundance of three representative ARGs (AeC) and intI1 (D) in duck feces (0 ft) and surrounding soil (1, 2, and 4 ft). Solid lines represent summer samples while
dashed lines represent winter samples. Limits of quantification (50 gene copies/g) for qPCR analysis are indicated by the horizontal dashed line. Error bars represent ± one standard
deviation from the mean of four samples (n ¼ 4).
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abundance of ARGs in their feces at levels comparable to those of
antibiotic-fed poultry and livestock. Antibiotic residues, known to
exert selective pressure for ARGs, only partially explained the
observed ARG levels in bird feces. Therefore, more research is
needed to discern other factors that may explain this observation,
to inform potential strategies to minimize this resistome. The
presence of high levels of ARGs in urban wild bird feces may pre-
sent a significant risk of acquisition by human pathogens, since
ARGs persisted with half-lives as long as several days. Although a
clear etiology between ARG propagation fromwild urban birds and
antibiotic resistant human infections has not been established,
these results underscore the need to limit exposure to bird feces
and proactively manage the associated risks.
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Table 4
Prevalence of ARGs and virulence genes in potential opportunistic pathogens isolated from wild bird feces (n ¼ 40a).

Bird species Opportunistic pathogens ARG positive Virulence gene positive ARG þ virulent gene
positive

Summer winter summer winter summer winter

Duck Escherichia coli b 15.0% 17.5% e e e e

Enterococcus spp. 20.0% 15.0% 95.0% 92.5% 17.5% 10.0%
Pseudomonas aeruginosa 12.5% 10.0% 77.5% 85.0% 10.0% 5.0%

Crow Escherichia coli 0% 7.5% e e e e

Enterococcus spp. 2.5% 5.0% 92.5% 97.5% 2.5% 7.5%
Pseudomonas aeruginosa 0% 10% 90.0% 85.0% 0% 7.5%

Gull Escherichia coli 60.0% 45.0% e e e e

Enterococcus spp. 57.5% 37.5% 95% 90.0% 52.5% 35.0%
Pseudomonas aeruginosa 50.0% 47.5% 82.5% 87.5% 45.0% 42.5%

a There were 36 fecal pools in total, and 40 colonies were isolated for each opportunistic pathogen from each pool.
b Escherichia coli is included as a common indicator of antibiotic resistance in environmental systems (Berendonk et al., 2015).
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