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ABSTRACT: Advanced oxidation processes via semiconductor photocatalysis
for water treatment have been the subject of extensive research over the past
three decades, producing many scientific reports focused on elucidating
mechanisms and enhancing kinetics for the treatment of contaminants in
water. Many of these reports imply that the ultimate goal of the research is to
apply photocatalysis in municipal water treatment operations. However, this
ignores immense technology transfer problems, perpetuating a widening gap
between academic advocation and industrial application. In this Feature, we
undertake a critical examination of the trajectory of photocatalytic water
treatment research, assessing the viability of proposed applications and
identifying those with the most promising future. Several strategies are proposed
for scientists and engineers who aim to support research efforts to bring
industrially relevant photocatalytic water treatment processes to fruition.
Although the reassessed potential may not live up to initial academic hype, an
unfavorable assessment in some areas does not preclude the transfer of
photocatalysis for water treatment to other niche applications as the technology
retains substantive and unique benefits.
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■ INTRODUCTION
Imagine a still image of the sun hanging low in the horizonis
it rising or setting? Only by examining subsequent time lapse
images can we predict its future direction. The development of
a new technology follows a similar path but of unknown length,
rising from its initial conception to reach a zenith of popularity
before arcing back toward the horizon. Photocatalytic
advanced oxidation processes (AOPs) for water treatment
have traveled a long path of technological development, having
been the subject of extensive research over the past 35 years.
Conventional AOPs employ precursor chemical oxidants, such
as O3 and H2O2, in combination or with an input of energy
(e.g., ultraviolet (UV) irradiation), to produce reactive oxygen
species (ROS) for the oxidative destruction of contaminants in
water. Heterogeneous semiconductor photocatalysis enables
advanced oxidation via a fundamentally different mechanism:
photons with energy equal to or greater than the material’s
band gap are absorbed by a particulate catalyst resulting in the
formation of a conduction band electron (ecb

− ) and valence
band hole (hvb

+ ) pair. Although both ecb
− and hvb

+ can participate
in a suite of redox reactions relevant to water treatment,
hydroxyl radicals (•OH), both surface-bound and in bulk
phase, are considered the dominant oxidant.1 Historically
adapted from the discovery of photoelectrochemical water-
splitting at the surface of a TiO2 electrode,

2 photocatalysis was
quickly recognized for its potential in water treatment.3,4

The advantages of photocatalytic water treatment over
homogeneous-phase AOPs are well documented. The bench-
mark commercial semiconductor material, TiO2, is inexpensive
(∼$1/kg),5 physically robust, and relatively nontoxic. It
requires low-energy ultraviolet light (UV-A) for excitation,
allowing for potential solar applications. As a heterogeneous
catalytic process, it obviates the need to continuously supply
precursor chemicals, which is a striking benefit for some
applications particularly those in remote or resource-limited
locations. A recent surge in scientific literatureover 8000
articles since 2000on the topic of photocatalytic water
treatment reflects this optimism (Figure 1). Despite substantial
research over the past few decades, the application of
photocatalysis in practical water treatment systems has been
very limited compared to conventional AOPs. Considering
these trends, how should the research community view the
technology horizon of photocatalytic water treatment? In this
Feature, we examine the current status of heterogeneous
semiconductor photocatalytic water treatment, emphasizing
barriers to technology transfer, examining the feasibility of
practical applications, and identifying key research needs for
overcoming obstacles, in search of answers to this question.

■ FUNDAMENTAL ROADBLOCKS PREVENTING
TRANSFER OF RESEARCH TO PRACTICE

The difficulties impeding commercial success of photocatalytic
AOPs are evidenced by the small number of systems currently
being used in water treatment practice. This is at odds with an
abundance of literature reporting the use of photocatalysis for
the treatment of common surface and groundwater pollutants.
Typically performed at bench-scale, these studies tend to over-
represent the opportunities and under-represent the limitations
demonstrated by the technology when applied in the field. An
overemphasis on material design and mechanistic evaluations
has led to some hubris in the academic literature regarding the
practicality of photocatalysis, perpetuating the gap between

(booming) academic research and (modest) industrial
application. Consequently, skepticism has grown, leading
some to question whether photocatalysis will become a
mainstream water treatment technology within the next two
decades.
Among the foremost roadblocks identified, low photo-

conversion efficiency remains a major challenge. Each step of
the photoconversion process has an associated loss of
efficiency, as detailed in Figure 2. Consistently, quantum
yields (Φ) reported in the literature, while varying widely
depending on the photocatalysts and experimental conditions,
are a few percent at most, even when measured using a probe
substrate with monochromatic irradiation near the band gap
(Table 1 inset in Figure 2). Compared to other AOPs, such
low Φ for •OH production is considered the most critical
drawback in photocatalytic water treatment. Taking UV/H2O2
AOPs as an example, the photolytic decomposition of H2O2 in
organic-free water at 254 nm has a reported Φ of 50%, and a
resulting •OH production yield near 100%,17,18 making it very
challenging for photocatalysis to compete in terms of energy
efficiency. However, it should be noted that TiO2 can absorb
photons in the less energetic UV-A range, permitting the use of
sunlight, and it does not require H2O2 addition, which is a
major cost in conventional AOPs.
As an additional limitation inherent to all AOPs, only a small

fraction of generated ROS contributes to the eventual
destruction of target pollutants. The high reactivity (∼109
M−1 s−1 for many organic contaminants)19 and nonspecificity
of •OH is generally considered an advantage of AOPs over

Figure 1. Publications trends in photocatalytic water treatment
research. Web of Science results for the number of yearly publications
on photocatalytic water treatment from 1999 to 2017. Inset shows
detailed results from the most recent complete reporting year (2017),
with each search keyword (i.e., “TiO2”, “visible”, “reactor”, and
“pilot”) modifier added to “photocatal* water treatment” individually.
Results indicate that only a small fraction of publications consider
reactor design or pilot scale investigations.
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other treatment systems. However, the presence of natural
organic matter (NOM), carbonate species, and other back-
ground constituents can greatly limit the effectiveness of
photocatalytic processes by scavenging ROS and absorbing
light (Figure 2).20,21 Studies conducted at pilot and full-scale
have indeed observed these effects to be exacerbated by the
presence of multiple interfering compounds coexisting at
variable concentrations.22 Although engineering and materials
science are poised to make significant efficiency improvements,
inherent constraints of the technology cannot be neglected
when translating new research advances to industrial
applications.

■ EFFORTS TO ADVANCE PHOTOCATALYTIC
MATERIALS

Limited industry adoption has done little to suppress the
steady flow of studies focused on the development of new
photocatalytic materials. Inspired by advances in materials
science and nanotechnology, an increasingly larger portion of
research has sought to develop improved catalyst materials.
Early efforts began with modifications to anatase TiO2. For
example, flame pyrolysis synthesis of the well-known P25 TiO2
powder is not only economical at industrial scale, but has been
found to result in a minority rutile phase fraction, improving

photocatalytic activity.23 Indeed, TiO2 has retained a central
locus in photocatalytic materials science research, which
continues to concentrate on two major limitations of TiO2

as avenues for improving catalyst performance: limited
absorption and the high recombination rate of photogenerated
primary species ecb

− and hvb
+ .

Many notable augmentations to TiO2 have been achieved.
Extending the photoactivity to lower energy wavelengths was
first realized by the incorporation of transition metals (e.g., Fe,
Cr, and V),24,25 and later by introducing nonmetal dopants
(e.g., N, C, F, and S)26 to create oxygen vacancies or low lying
interband states at the localized energy levels of the dopant. In
a recent leap-ahead application of this approach, surface
hydrogenation was employed to create many disorder-induced
midgap states, upshifting the valence band-edge, resulting in
black/blue-colored TiO2 crystals with absorption near the
infrared region.27 Though effective at improving absorption of
visible light, too many midgap states can lead to excessive
recombination and an overly narrowed band structure,
reducing the redox potential of the ecb

− /hvb
+ pair and impacting

the type of ROS produced.28 The formation of heterojunctions
with smaller band gap semiconductors29 or sensitization with
organic chromophores30 can also widen the absorption toward
visible light. Similarly, visible light-absorbing noble metal

Figure 2. Detailing the low-energy conversion efficiencies in typical TiO2 photocatalytic water treatment processes. Photons are generated either by
electrical conversion or directly harnessing solar energy. (1a) Although low-pressure mercury lamps are typical, blue/UVA LEDs are being
increasingly studied, with wall plug efficiencies nearing 30%.6 (1b) Electrical conversion losses are obviated when harnessing solar energy; however,
< 5% of solar photons are absorbed as the wide band gap (Eg = 3.0−3.2 eV; 390−410 nm) of TiO2 is poorly matched to the solar spectrum.7 (2)
Photons entering the reactor can be lost through intrinsic scattering by the particulate and inefficient light management leading to catalytic
absorption of 30−70% of the photons emitted into a typical slurry reactor.8 (3) Photons absorbed by the catalyst can then produce ecb

− and hvb
+ ,

which further perform redox reactions at the catalyst surface to generate ROS. Regardless of the source of light, a majority (>90%) of
photogenerated ecb

− /hvb
+ pairs recombine rapidly (within subμs),4,9 leading to quantum yields (Φ) of less than 10% for most materials. The inset

table shows a list of experimentally reported bench-scale material Φ for •OH production from various TiO2 photocatalysts.10−16 (4) The
availability of generated ROS for pollutant destruction is greatly decreased through scavenging. As an illustration, a representative estimate of
natural water containing 3 mg-C/L (k(•OH) = 108 L/mol-C·s) and 50 mg/L of bicarbonate alkalinity as CaCO3 (k(

•OH-HCO3
−) = 8.5 × 107 /M·

s) suggests that <5% of •OH would be available compared to distilled water (i.e., in the absence of scavengers) at the same pH.
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nanoparticles can inject electrons into the photocatalyst
conduction band.31

Junctions with metals have also been extensively employed
to reduce recombination, acting as electron withdrawing
centers through the formation of a rectifying Schottky
barrier.32 However, high loadings of cocatalysts can limit the
surface area, complicate the synthesis procedure, and result in a
physically fragile composite material. This same composite
architecture can be achieved by replacing metals with
semimetallic carbonaceous materials such as graphene,33 but
the intrinsic instability of these materials in an oxidative
environment remains an unresolved challenge. Nanoscale
control over structural hierarchy and porosity present addi-
tional opportunities to improve the efficiency of TiO2 by
promoting charge migration and increasing surface area.34−36

Many researchers continue to focus on improving the
performance and stability of these augmented TiO2 materials.
Beyond modifications to TiO2, other semiconductor

materials have been investigated as substitutes for TiO2. CdS
and WO3 are relatively effective visible light photocatalysts, but
toxic components such as Cd are clearly incongruent with safe
and sustainable water treatment practices. Graphitic carbon
nitride (C3N4) is a metal-free visible light photocatalyst with a
tunable electronic structure,37,38 though it exhibits poor
chemical stability. Hybrid organic−inorganic perovskite
materials offer a structural platform for highly tailored
absorption/charge transport properties using low cost, earth-
abundant materials.39 Increasingly popular in the solar cell
literature, a major limitation of perovskites in environmental
applications has been instability in wet conditionsclearly a
drawback for water treatment. Some materials have emerged as
viable alternatives to TiO2: platinized tungsten oxide (Pt/

WO3) is able to produce •OH under visible light through
multielectron reduction by the in situ generation and
subsequent decomposition of H2O2.

40 A newly emerging
alternative, BiPO4 has a more positive valence band maximum
potential than TiO2 resulting in increased oxidation power,
higher photoactivity, and greater efficiency of mineralization at
the expense of requiring higher energy UV excitation.41

Creative and yet-to-be-devised solutions are required to
translate these promising materials into practical water
treatment applications. These fundamental research efforts,
which have been further detailed in a number of
comprehensive reviews,42−44 continue to result in better
materials while deepening our knowledge of semiconductor
photocatalytic treatment.
Considering the depth of high-quality research conducted to

advance photocatalysis materials science, it is prudent to
scrutinize why TiO2 has yet to be superseded by a next-
generation material. A primary challenge in the field is
identifying a threshold requirement for replacement; what
determines whether a breakthrough material is “better” than
TiO2? Beyond bench-scale evaluation, many practical
challenges have been overlooked in research that focuses on
novel materials development. Our review of the literature
reveals a proliferation of scientifically interesting, yet
impractical materials that are fragile, chemically unstable, or
have expensive, rare, or inherently toxic components.
Evaluation conditions that more completely reflect industrial
application by expanding performance criteria beyond
absorption (i.e., greater spectral match and less scattering)
and quantum yield (i.e., reduced recombination) to include
cost of production, long-term stability, robustness, ease of

Figure 3. Select reactor designs for semiconductor photocatalytic water treatment: (a) A typical slurry reactor system consisting of a reactor
containing suspended TiO2 photocatalysts with a quartz encased LP Hg UV light source and membrane filtration for catalyst recovery. (b−d) More
recently developed reactor designs incorporating immobilized catalyst particles obviating the need for post-treatment membrane separation.
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separation, and other application specific conditions, would aid
in technology transfer.

■ PHOTOCATALYTIC REACTOR DESIGN AND
SYSTEM EVALUATION

The focus of academic research on materials development
rather than reactor or systems engineering arguably overlooks
opportunities to improve the performance of photocatalytic
water treatment systems through innovative reactor design.
Despite numerous studies in this area,45 the sparse
configurations in practice have largely been restricted to
reactor systems with light emitted into a slurry of well-mixed
TiO2 particles to maximize photon absorption and mass
transfer of redox species,46 as shown in Figure 3a. These
systems may be competitive with other AOPs in selected niche
applications discussed below; however, they remain unopti-
mized and suffer from limitations including low energy
efficiency, slow reaction kinetics, and in selected cases, catalyst
fouling or photoaggregation.22,47 Alternatively, photocatalysts
can be immobilized onto support substrates, eliminating the
need for ultrafiltration separation and reducing shear stress on
catalyst particles. The efficiency of immobilized systems,
however, can be further limited by obscured catalyst surface
area, reduced illuminated catalyst surface area per volumetric
water treated, and higher rates of photon scattering.
Immobilization substrates explored (Figure 3b−d) include
optical fibers for improved light management48 and fluidized
media,49 foam porous supports,50 membranes,51 and electro-
spun fibers,52 which have each been engineered to improve
pollutant destruction while minimizing ROS scavenging. The
majority of these immobilized reactor designs remain at bench
scale or in conceptual phase. Recent rapid advances in light
emitting diode (LED) technology are poised to inspire a new
generation of innovative reactor designs due to their
advantageous over gas discharge lamps including less fragile
casings, lack of toxic components, small size, and rapid warm-
up time.53,54

The relatively slow translation of these studies to industrial
practice is likely related to the complexity of large-scale system
design, something often overlooked at bench scale. Such
barriers, however, have not limited increasingly widespread,
full-scale adoption of UV and UV/H2O2 water purification
applications,55 which likewise require radiation field determi-
nation. Radiation scattering by the catalyst makes it
cumbersome to assess the local volumetric rate of photon
absorption (LVRPA) at each point within a photocatalytic
reactor by analytically or numerically solving the radiation
transfer equation (RTE). In a simplified approach, the six-flux-
model (i.e., following scattered photons routed through the six
directions of the Cartesian coordinates) has been successful in
calculating LVRPA at accuracies close to the RTE while
allowing for the derivation of dimensionless parameters useful
in slurry reactor design.47,56,57 Ray-tracing, which involves
analyzing the path of individual rays from an emission source
based on the optical properties of the incident environment,
has previously been applied to determine local radiation fields
in UV disinfection reactors.58 This technique could be adapted
to determine LVRPA in immobilized photocatalyst reactors
with relative ease, although incorporating an absorbing and
scattering mobile particulate slurry into a ray tracing analysis
presents a nontrivial challenge.
Other difficulties result from the lack of a universally

accepted method to quantitatively evaluate and compare the

performance of new materials and reactor designs. Photo-
catalytic water treatment represents a highly variable parameter
space that depends on target pollutant, water quality
parameters, reaction time, mixing conditions, and light source.
To ease knowledge transfer, uncoupling reaction rate constants
from the number of photons absorbed is critical. Determi-
nation of LVRPA is integral for flow-through reactor design,
although it has not been deemed necessary for material
evaluations typically performed in a well-mixed batch reactor.
If we accept at a minimum that characterization of new
catalysts should include measurements of Φ, then a concerted
effort to quantify the number of photons in the system, by
either radiometry or chemical actinometry, is essential, as this
information cannot be derived from reporting irradiation time
and lamp type/power alone. Depending on the proposed
application and method of evaluation, this Φ may be defined in
terms of target pollutant destruction or the generation of a
specific oxidizing species such as •OH. Care should be taken to
consider whether the reactions in a particular system may
occur via bulk-phase or surface-bound •OH, or through
pathways involving other oxidative species. Additionally, for
accurate reporting of kinetics, a probe compound that does not
compete for absorption nor degrade with direct photolysis
should be employed. For these reasons, as well as their
susceptibility to sensitization, dyes, such as methylene blue, are
inappropriate probes for comparing the activity of photo-
catalytic semiconductors.59

Effective comparison is challenging not only among different
photocatalytic systems, but between photocatalysis and its
competitor AOP technologies. The most commonly applied
figure of merit is electrical energy per unit order (EE/O): the
electric energy (or alternatively the area of solar radiation)
required to degrade a target contaminant by 1 order of
magnitude in a unit volume of contaminated water.60 For a
treatment scenario with low-concentration of target contam-
inants compared to background scavengers, EE/O is
straightforward to calculate, and is a versatile aid to design.
Translation from bench-, to pilot-, to full-scale applications can
therefore be readily assessed through determination and
reporting of EE/O for common pollutants. While values of
∼<0.5 to 10 kWh/m3 are considered competitive for drinking
water applications,60 typical slurry TiO2/UV systems tend to
report values of 10 kWh/m3 or higher, whereas competing
AOPs such as UV/H2O2 and H2O2/O3 can report less than 1
kWh/m3.22,61 Although reporting of EE/O or other metrics,
such as electron efficiency,62 is encouraged, the limitations of
comparing technologies using a single value should be
recognized. Care should be taken to include other factors as
well, such as the embedded energy requirements (or costs) of
applying consumable chemicals.

■ STRATEGIES FOR IMPROVING RESEARCH
OUTCOMES

When recent advances in materials science and reactor
engineering are combined, opportunities to improve the
performance of photocatalytic water treatment may emerge.
On the basis of our collective experience, we propose the
following strategies for researchers aiming to advance photo-
catalytic water treatment processes without succumbing to the
pitfalls that have stunted progress during the past three
decades:
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(1) Expand the criteria for assessing the performance of
photocatalytic water treatment systems. To create tech-
nologies that have a higher likelihood of attracting
commercial interest, researchers should expand perform-
ance criteria to include factors such as material cost and
availability, the feasibility of large-scale production,
tendency to foul in the proposed water matrix, and
long-term stability and performance under likely
operating conditions.

(2) Evaluate the performance of photocatalysts under well-
def ined conditions. The use of established approaches for
quantifying photon fluence and absorption (e.g., radio-
metry, actinometry, or computational evaluation of
LVRPA) is essential, as is the use of probe compounds
that do not affect light absorption or otherwise alter the
catalyst.59 As candidate photocatalysts advance toward
practical application, testing should be done under
standardized conditions, using well-characterized probe
compounds, and solution conditions (e.g., pH, ionic
composition, concentration of ROS scavengers) that
approximate those encountered in actual treatment
systems. An appropriate figure of merit, such as EE/
O,60 should be reported when comparing the efficiency
of different AOPs.

(3) Consider creative approaches and seek break-through
photocatalysts without neglecting the challenges of adapting
materials f rom other disciplines. While repurposing
emerging materials from related fields can be an effective
strategy to develop innovative water treatment photo-
catalysts, a blind pursuit can lead to the promotion of
materials not suitable for practical AOP application. For
example, materials developed for water-splitting or
photovoltaics also operate under photoinduced charge
transfer processes; however, they differ in the nature of
their energy conversion processes and are designed with
different ideal characteristics in mind. As such, even the
most successful of these materials may be ineffective at
generating ROS for water treatment.

(4) Design and test materials for specif ic applications. Many
past reports on photocatalyst performance fail to identify
the most appealing application for the material. The
performance of a photocatalyst depends upon the
properties of the contaminant being treated,63 as well
as the relative concentrations of other interfering
components. As a result, researchers may develop
photocatalysts for applications that are impractical or
for which industry lacks interest. To overcome this
challenge, researchers need either to overcome the major
barriers facing traditional applications such as drinking
water and municipal wastewater treatment, or to identify
niche areas, where photocatalytic water treatment can be
competitive with existing AOPs.

■ MOVING AHEAD: DESIGN FOR NICHE
APPLICATIONS

The need for energy-efficient AOPs will persist, as advances in
analytical techniques and increasingly stringent legislation
continue to drive lower contaminant minimum concentration
targets for potable use and environmental discharge. For
photocatalysis to carve out a place in this growing market, it
must be competitive with other AOP technologies, particularly
UV/H2O2, which is more widely adopted by industry. At pilot-

scale, reports show the EE/O of UV/H2O2 tends to be
significantly lower than UV/TiO2.

22,64 Aside from energy
efficiency, homogeneous AOPs are easier to engineer, are not
surface area limited, have fewer mass transfer problems, and do
not experience catalyst surface fouling. For large scale
municipal applications, it is the agreement among industry
practitioners, as well as these authors, that current photo-
catalytic water treatment systems are impractical because they
are less efficient and have higher costs than existing UV/H2O2,
O3/H2O2, and UV/O3 technologies.65,66 However, an
unfavorable prospect for large scale application does not
preclude the potential of photocatalysis for water treatment in
select niche applications; the technology still retains sub-
stantive and unique benefits. Tangible short-term outputs
based on a valid business model and a clear pathway for
technology transfer to industry are overdue, considering the
maturity of basic science and, indeed, are critical to shrink the
increasingly wider gap between industrial needs and academic
research.
Reappraising the unique benefits of photocatalysis over

other AOPs may pave the road toward these niches. For
example, photocatalysis enables not only oxidation but also
reduction, presenting relatively untapped opportunities to
reductively remove oxyanions, such as nitrate,67 chromate,68

and redox-active metal ions, such as Ag+.69 For several metals,
reduction can lead to irreversible fouling through the
formation of crystallites on the surface of the catalyst.69 In
contrast, Cr(VI) can be reduced to less toxic Cr(III) which is
easily precipitated out of solution.70 This process can be made
more favorable by the presence of abundant efficient h+

scavengers.71 Innovative approaches to improve the reductive
use of photocatalysis continue to emerge,72 albeit still in
embryonic phase. The ability to reduce oxygen to form H2O2
by select photocatalysts, such as C3N4,

73 may also become a
useful approach to produce AOP precursors on site.
Through the oxidation pathway, the generation of highly

oxidative hvb
+ in addition to ROS can contribute to degradation

of recalcitrant organics and even mineralization for niche
applications.74 Photocatalysis has been proposed as a pretreat-
ment for particularly challenging waters, especially those that
occur in smaller volumes compared to municipal waste
streams; for example, effluents loaded with lignin (in the
pulp and paper mill industry),75 dyes (textile industry),76 poly/
perfluoroalkyl substances (chemical industry),77,78 and pesti-
cides (pharmaceutical industry).79−81 While reducing toxicity
is often the goal, complete mineralization is unrealistic for the
vast majority of applications.1,82 The resulting incomplete
degradation of hazardous pollutants requires careful assess-
ment of the ecotoxicity83,84 or human toxicity85,86 of the
byproducts. The ability of photocatalysis to increase
biodegradability requires further attention with emphasis on
the development of methods to enable the rapid assessment of
contaminant biodegradability. The higher mineralization
potential of photocatalysis when applied as a polishing step
for pretreated water can also be advantageous in niche
applications where cost and time are less restricted, such as
the treatment of highly turbid waters containing recalcitrant
contaminants, space-station water treatment systems,87,88 or
the production of ultrapure water for the semiconductor
industry.89

As a catalytic process, not requiring consumable chemicals is
another key benefit of photocatalytic treatment systems. This
leads to opportunities in applications where transportation of
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chemicals is cumbersome (i.e., geographically isolated regions)
or in biological systems that may be sensitive to the addition of
chemicals. The performance and costs associated with small-
scale groundwater pump and treat systems employing
photocatalysis can be comparable to conventional treatment
technologies,90 while negating the need for a continual supply
of chemicals. Other emerging opportunities include treatment
of waste streams from aquaculture and hydroponics, as both
are often practiced in small scale. Aquaculture waters consist of
a unique set of contaminants including pathogens, taste and
odor compounds, and antibiotics91 that are not easily treated
with conventional systems. Similarly, photocatalytic treatment
of recycled hydroponics water can facilitate the breakdown of
phytotoxic compounds, leading to increased crop yields
without leaving a harmful residual.92

Perhaps its most greatly espoused attribute is that photo-
catalysis can be solar powered, making photocatalytic treat-
ment ideal for highly cost-sensitive or energy-restrictive
applications. Regions that lack access to clean water often
lack energy infrastructure, justifying the need for solar-
powered, household-based, water treatment interventions in
developing regions.7 Several researchers have proposed using
TiO2 to enhance solar disinfection (SODIS), demonstrating its

ability to disinfect and decontaminate water faster than SODIS
alone.93−95 Solar powered applications are intrinsically limited
by the low-energy density of sunlight (<1000 W/m2); yet
when land area is not restricted and an effective light-
harvesting strategy such as a compound parabolic collector is
employed, photocatalysis can be an efficient method for the
low-energy treatment of small-scale industrial waste
streams.96−98 Other solar-based applications have emerged
for industrial off-grid treatment, including floating photo-
catalyst structures in oil sands tailing ponds, which are large in
area and already operate over very long-time scales.99,100 The
use of solar-driven photocatalysis has been suggested as a
possible means of detoxifying treated drinking waters
containing residual algal toxins, but concerns remain regarding
cost effectiveness and generation of toxic byproducts.101 At
best, such technology might be utilized for this purpose in
small, remote communities where piped supply is intermittent
and volumes to be treated are small.

■ FUTURE OF PHOTOCATALYSIS: SUNRISE OR
SUNSET?

Although longer time frames for acceptance of new
technologies in risk-averse industries, such as water treatment,

Figure 4. Future Trajectory of Photocatalytic Water Treatment. The development of a new technology can be visualized as following the trace of
the sun on the horizon, rising from its initial conception, then reaching a zenith of popularity before arcing back toward the horizon. Photocatalytic
water treatment has undeniably experienced a peak of academic hype, leading many detractors to espouse the failure of the technology to live up to
its predicted potential. However, it is the opinion of these authors that this need not lead to the sun setting on industrial applications for
photocatalytic water treatment, but that real near-term applications can be achieved considering the maturity of basic science. The practical plateau
of technical performance will likely fall below peak expectations, as with many new innovations; however, valid business models and a clear pathway
for technology transfer to industry can help engineers finally harness the startling benefits of these unique materials.
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can be expected,102 the more than three decades-long delay in
technology transfer clearly suggests that photocatalysis for
water treatment is not in the sunrise phase of research and
development. However, we do not view it as a sunset, either;
rather, we see the field overcoming an inflated expectation
(a.k.a. academic hype),103 exacerbated by its connection to
concurrent hypes in the fields of materials science and
nanotechnology (Figure 4). While we should not limit our
imagination or the boundary of science, it is time for us to
reevaluate critically the necessary components of successful
research to move the field of photocatalytic water treatment
forward.
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